
J
H
E
P
1
0
(
2
0
0
6
)
0
1
3

Published by Institute of Physics Publishing for SISSA

Received: July 5, 2006

Accepted: August 13, 2006

Published: October 4, 2006

Holography and renormalization in Lorentzian

signature

Albion Lawrence and Amit Sever

Brandeis Theory Group, Martin Fisher School of Physics, Brandeis University

Waltham, MA 02454-9110, U.S.A.

E-mail: albion@brandeis.edu, asever@brandeis.edu

Abstract: De Boer et. al. have found an asymptotic equivalence between the Hamilton-

Jacobi equations for supergravity in (d+1)-dimensional asymptotic anti-de Sitter space, and

the Callan-Symanzik equations for the dual d-dimensional perturbed conformal field theory.

We discuss this correspondence in Lorentzian signature. We construct a gravitational

dual of the generating function of correlation functions between initial and final states,

in accordance with the construction of Marolf, and find a class of states for which the

result has a classical supergravity limit. We show how the data specifying the full set of

solutions to the second-order supergravity equations of motion are described in the field

theory, despite the first-order nature of the renormalization group equations for the running

couplings: one must specify both the couplings and the states, and the latter affects the

solutions to the Callan-Symanzik equations.

Keywords: AdS-CFT Correspondence, Renormalization Group.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep102006013/jhep102006013.pdf

mailto:albion@brandeis.edu
mailto:asever@brandeis.edu
http://jhep.sissa.it/stdsearch


J
H
E
P
1
0
(
2
0
0
6
)
0
1
3

Contents

1. Introduction 2

2. Review of Hamilton-Jacobi theory 4

2.1 Example: the upside-down harmonic oscillator 5

3. AdS/CFT in Lorentzian signature 6

3.1 AdS/CFT basics 7

3.2 Boundary behavior of classical fields in AdS 9

3.3 Quantum states in the CFT 10

3.4 SUGRA field eigenstates and gravitational backreaction 12

3.5 Perturbing the CFT 13

3.5.1 The limit of linearized supergravity 13

3.5.2 Perturbations in the interacting theory 14

3.6 The generating function of correlation functions 14

4. Holographic renormalization and the Hamilton-Jacobi equation 15

4.1 General discussion 15

4.2 The radial Hamilton-Jacobi equation 16

4.3 Solving the Hamilton-Jacobi equations 17

4.4 Relation to the renormalization group 19

4.4.1 Beta functions 19

4.4.2 The Callan-Symanzik equation 21

4.4.3 Caveats 23

5. Holographic RG in Lorentzian signature 23

5.1 The Hamilton-Jacobi functional in Lorentzian signature 24

5.2 The Callan-Symanzik equation for nontrivial matrix elements 25

5.3 Lorentzian HJ/CS correspondence 27

5.4 Perturbed CFTs with an IR cutoff 30

5.5 Extension of the holographic RG equations into the IR 33

5.6 Reversibility of holographic RG 35

6. Conclusions 35

– 1 –



J
H
E
P
1
0
(
2
0
0
6
)
0
1
3

1. Introduction

In the AdSd+1/CFTd correspondence [1], the coordinate position of an excitation relative

to the timelike boundary of AdS is in some sense dual to the characteristic scale size of that

excitation in the d-dimensional CFT. This can be seen from entropic considerations [2],

from the duals of classical bulk probes [3 – 7]-[8], and from the semiclassical bulk description

of Wilson lines [9, 10].

Let x be coordinates parallel to the boundary and r the coordinate running perpen-

dicular to the boundary. In the Euclidean version of the correspondence, the bulk fields

φa(x, r) are taken to be dual to the (in general space-time dependent) couplings λa(x) of

the boundary theory.1 The equations of motion for φ can be written as an equation for

evolution in r, where the boundary of AdS space is dual to the UV of the field theory.

The ”holographic renormalization group” [11 – 15]-[16] then relates this evolution to the

running of the dual couplings under change of renormalization group scale.

In particular, de Boer, Verlinde, and Verlinde have shown that as we approach the AdS

boundary, the Hamilton-Jacobi (HJ) equations for radial evolution of the bulk supergravity

fields are equivalent to Callan-Symanzik (CS) equations for the correlation functions of

the boundary field theory [15, 16]. In this formalism, all nonsingular solutions to the

supergravity equations (such was domain walls in AdS), and solutions with singularities

that are resolved by string theory, are manifestly dual to renormalization group flows.

Nonetheless, this and other versions of holographic RG raise a number of issues, of

which we list three:

1. The CS equations are first order in the RG scale parameter, while the spacetime equa-

tions of motion are second order. In Lorentzian signature, the spacetime equations

of motion seem to require twice as many initial conditions [7, 17] than are typically

specified in renormalization group flows.

2. As we approach the AdS boundary, φ(r) in general becomes the coupling of the dual

operator at scale `(r) (for low-dimension operators this does not have to be true

[7, 18].) This is not obviously the right map deep in the interior of AdS spacetimes

[19, 20]. Furthermore, in Lorentzian signature [7, 17], φ is determined by both the

coupling and the state of the dual field theory.

3. Considered as flow equations in the radial direction r of AdS, the spacetime equations

of motion are reversible. The Callan-Symanzik equations are also reversible in RG

scale. On the other hand, the Wilsonian version of the renormalization group is an

evolution under coarse graining, which is not reversible. How then does the Wilsonian

picture fit into the AdS/CFT correspondence?

The main goal of this paper is to solve the puzzle raised in the first point. The sum-

mary of the solution is as follows. In Lorentzian signature, the second order supergravity

equations of motion have two classes of nonsingular solutions characterized by their be-

havior at the timelike AdS boundary [17, 7]. One class is dual to deformations of the

1Here x parameterizes a point on the d-dimensional boundary.
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field theory Lagrangian. The second class depends on the semiclassical excitations of the

field theory above the vacuum state.2 A general solution to the spacetime equations of

motion will have terms with both types of boundary behavior, and so be specified both

the by couplings of the perturbed CFT, and by the state of the CFT, when the state is a

”classical” state in the large-N limit.

In the Hamilton-Jacobi formulation, the equations of motion are solved by first solving

the Hamilton-Jacobi equations for Hamilton’s principal function S:

H(φa, πa,φ =
∂S

∂φa
) = 0

and then solving Hamilton’s equations

φ̇a =
∂H

∂πa,φ
(πa =

∂S

∂φa
) ,

where φa are some fields in AdS, πa,φ are the conjugate field momenta and the dot stands

for radial derivative. In holographic renormalization the former equations are dual to the

Callan-Symanzik equations, while the latter are dual to the RG equations

Λ∂Λλa = βa(λ)

for the couplings λ, where βa are the beta functions and Λ is a momentum space cutoff.

We will show that in these solutions, the freedom to excite modes dual to a choice of state

is captured in the choice of solutions to the Hamilton-Jacobi equation. For the holographic

equivalence between the Hamilton-Jacobi and Callan-Symanzik equations to hold, we must

be able to solve the latter for any choice of state. We find that we can, once we take into

account the modification of the Callan-Symanzik equation for correlation functions in a

nonvacuum state.

Along the way we will also discuss the problem raised in (2), and resolve the problem

raised in (3).

The format of this paper is as follows. In section 2 we review HJ theory and apply it to

some simple examples, pointing out specific features useful for our discussion. In section 3

following [7, 17, 21], we discuss the AdS/CFT correspondence in Lorentzian signature.

In section 3.1 we review the AdS/CFT basics. In section 3.2 the boundary behavior of

classical fields in AdS is discussed. In section 3.3 we explain the classical supergravity

manifestation of the CFT states. We find that in order to guarantee the existence of

a saddle point over a range of couplings, the eigenstates of the field operators are good

choices for initial and final states. In section 3.4 we discuss the issue of gravitational

backreaction for such states. In section 3.5 we review the correspondence where the CFT is

perturbed by relevant operators. Finally in section 3.6 we discusses the generating function

of correlation functions. section 4 is a review and critical discussion of the formalism of

[15, 16]. In section 5 we develop a Lorentzian-signature version of the picture in [15, 16]. We

2In this class there are also singular solutions in either signature generated by sources such as D-branes

or D-instantons.
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identify the ”missing constants of motion” in the RG equations with the choice of classical

state of the system. In section 5.1 we discuss the Hamilton-Jacobi equations in Lorentzian

signature. In section 5.2 we derive a Callan-Symanzik equation for general matrix elements

of time-ordered products of operators. In section 5.3 we show that the Hamilton-Jacobi

and Callan-Symanzik equations are determined by the same information, thus solving

the puzzle posed in question (1). In section 5.4 we discuss an alternate solution to the

Hamilton-Jacobi equations, in which the constants of motion are the operator expectation

values specified at an infrared cutoff. In section 5.5 we discuss the extension of our story

deep into the infrared. In section 5.6 we discuss the degree to which holographic RG is

related to the Wilsonian picture of renormalization. In section 6 we conclude.

2. Review of Hamilton-Jacobi theory

Consider a dynamical system with 2n phase space variables (q,p), corresponding to posi-

tions q = {qi, i = 1 . . . n} and canonical conjugate momenta p = {pi, i = 1 . . . n}, and a

Hamiltonian H(p,q). In Hamilton-Jacobi theory, the equations of motion are solved in two

stages. First, one solves the Hamilton-Jacobi equation for Hamilton’s principal function S:

∂tS(q, t) + H

(
p =

∂S(q, t)

∂q
,q

)
= 0 . (2.1)

This is a nonlinear equation; in general it has many solutions. Given a solution, one finds

the classical trajectories q(t) from a set of first-order differential equations:

q̇ =
∂H

∂p

∣∣∣∣
p= ∂S

∂q

. (2.2)

If H is quadratic in momenta, the full equations of motion for q are second order in

time. Their full soutions require that one specify 2n constants of motion (a,b), where

a = {ai, i = 1 . . . n} and b = {bi, i = 1 . . . n}. For example, q(ti) and q̇(ti) at some initial

time ti determine the trajectory completely. On the other hand, a full solution to (2.2)

requires only n constants of motion (b), for example b = q(ti) at some initial time ti.

The point is that the additional constants of motion of the dynamics are contained in

the choice of solution to (2.1). The solution can be written as S(q(t),a, t), where a are n

constants of motion. If in addition to (2.2) we demand that
∣∣∣∣
∂2S(q(t),a; t)

∂qi∂aj

∣∣∣∣6= 0 , (2.3)

then the constants of motion b are given by

b = −∂S(q(t),a, t)

∂a
, (2.4)

b is canonically conjugate to a and S is the generating function of canonical transformation

between (q,p) and (a,b). Since the new canonical variables (a,b) are constants of motion,

the new Hamiltonian

K(a,b, t) = ∂tS + H = 0 . (2.5)
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Note that, instead of using (2.2) one can extract the solution q(a,b, t) directly from (2.4).

One particular choice of a is q(t0) at some initial time t0. The corresponding solution

to (2.1) is:

S(q(t),q(t0), t) =

∫ t

t0

dt′ (pq̇ − H) , (2.6)

evaluated on a solution to the classical equations of motion with fixed q(t0) ≡ q0 = a.

2.1 Example: the upside-down harmonic oscillator

As an example, let us study the one-dimensional upside-down harmonic oscillator, with

Hamiltonian H = 1
2p2 − 1

2Ω2q2. Since H is time independent, one solution to (2.1) can be

found by setting S1 = −Et + W (q). The HJ equation becomes a differential equation for

W :
1

2

[
(∂qW )2 − Ω2q2

]
= E , (2.7)

which has the solution:

W (q,E) =
E

Ω
sinh−1

(
Ωq√
2E

)
+

Ω

2
q

√
2E

Ω2
+ q2 + f1(E) . (2.8)

Here a = E is the constant of motion governing the solution to the Hamilton-Jacobi

equation. f1(E) is an arbitrary function; f1 changes the definition of the phase space

variable conjugate to E. The equation of motion for q now reduces to:

q̇ = p = ∂qW =
√

2E + Ω2q2 , (2.9)

and has the solution

q(t) =

√
2E

Ω
sinh [Ω(t − t0)] . (2.10)

Here

b ≡ −∂S1

∂E
= t0 − f ′

1(E) (2.11)

is the integration constant arising from the first order differential equation (2.9). The

complete solution is specified by t0 and E, where t0 is defined as the time at which q(t0) = 0.

The solution S1 is the generating function of the canonical transformation between (q, p)

and (E, t0 − f ′
1(E)).

Alternatively, we can find the classical action for q(t) given that q(t0) = q0. Here

a = q0 is the constant of motion that arises in the solution to (2.1):

S2(q, q0, t) =
1

2
Ω coth [Ω(t − t0)] (q

2 + q2
0) − Ω csch [Ω(t − t0)] qq0 + f2(q0) . (2.12)

where f2 is an arbitrary function, changing the definition of the momentum conjugate to

q0. Eq. (2.12) can be computed by simply inserting the known classical solution into the

classical action S =
∫ t
t0

L. The equation of motion for q is:

q̇ = ∂qS2 = Ω coth [Ω(t − t0)] q − Ω csch [Ω(t − t0)] q0 . (2.13)
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Integrating this, we find that

q(t) = q0 cosh [Ω(t − t0)] +
p0

Ω
sinh [Ω(t − t0)] . (2.14)

Here

b ≡ −∂S2

∂q0
= p0 − f ′

2(q0) (2.15)

is the integration constant arising from the first order equation (2.13). S2 is the generating

function of the canonical transformation between (q, p) and (q0, p0 − f ′
2(q0)).

We have solved for the dynamics by first choosing the constants of motion a in the

solution to the Hamilton-Jacobi equation, and then solving for the trajectory q(t) via

Hamilton’s equations. Note, however, that for a given a, not all values of q may be allowed.

For example, consider trajectories with fixed energy for the standard harmonic oscillator

with frequency ω. The solution can be found from (2.8) by setting Ω = iω. For fixed ω,

the region q > 2E/(mω2) is classically forbidden. This appears already at the level of the

solution W , which becomes imaginary in this region. While W in this region can be used

in a WKB analysis (as the phase of the WKB wavefunction satisfies the Hamilton-Jacobi

equation to lowest order in ~), it does not correspond to any classical trajectory.

3. AdS/CFT in Lorentzian signature

We will be discussing the gravitational duals of perturbed d-dimensional conformal field

theories. Consider a CFT X perturbed by spacetime dependent couplings λa(x) to lo-

cal operators Oa(x). Correlation functions of local operators can be extracted from the

transition amplitudes of the perturbed theory:

Z[{λ(x)}] = 〈ψ+(t+)|T exp

(
−i

~

∫ t=t+

t=t−
ddx

∑

a

λa(x)Oa(x)

)
|ψ−(t−)〉 , (3.1)

by taking functional derivatives with respect to λa(x). Here the local operators Oa(x) and

the states |ψ±〉 are written in the interaction picture.

The generating function of Euclidean correlators was constructed in [22, 23]. This

study of the duality in Lorentzian signature was initiated in [7, 17], which provided a

duality map for the propagating classical and quantum states. In [21] these states were

constructed in the bulk, so that they are independent of variations of λ in the interior of

[t−, t+]. This allows (3.1) to be the generating function of matrix elements of time-ordered

products of operators.

This section will be dedicated to sketching the gravitational dual of (3.1) in the semi-

classical limit, following [7, 17, 21]. Following [21], we take care to define |ψ±〉 so that they

are independent of the coupling. In particular, in later sections we will be interested in

applying this formula in a classical limit where Z can be considered as a solution to the

Hamilton-Jacobi equation of the dual supergravity theory, with λa(x) as the configuration

space variables. We can apply classical Hamilton-Jacobi theory to (3.1) if there is a solu-

tion to the classical supergravity equations for each value of λ(x). We will argue that for
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these purposes, choosing |ψ±〉 to be eigenstates of the field operators in the gravitational

dual will lead to Z having the desired properties, and are a technically convenient choice.

These states are potentially dangerous in a theory of quantum gravity. We will discuss

these dangers and the reasons why they should not trouble the semiclassical computation

of (3.1).

We will take the CFT to be d = 4, N = 4 supersymmetric Yang-Mills theory with

gauge group U(N). The story for other CFTs will be essentially the same, even in other

spacetime dimensions.

3.1 AdS/CFT basics

We begin by reviewing general aspects of this duality, as outlined by [1, 22, 23]. The

correspondence can be considered in various coordinate patches of AdS spacetime. A set

of coordinates which cover the entire Lorentzian spacetime are:

ds2 = −
(

1 +
r2

R2
AdS

)
dt2 +

dr2

(
1 + r2

R2
AdS

) + r2dΩ2
3 , (3.2)

where dΩ3 is the solid angle on S3, and RAdS is the AdS radius of curvature. There is a

timelike boundary at r = ∞ which is conformally equivalent to IRt×S3. This boundary is at

infinite proper distance along r, but light rays can reach the boundary in finite global time

(see figure 1.) String theory on the full AdS5×S5 is dual to d = 4, N = 4 super-Yang-Mills

theory on IRt × S3.

Similarly, we can consider the correspondence for the Poincaré patch of AdS space,

described by the metric

ds2 = R2
AdS

dz2 + dx2

z2
, (3.3)

where dx2 is the metric on four-dimensional Minkowski space IR3,1. In these coordinates

the timelike boundary is at z = 0 (see Fig 2.) String theory on this space is dual to the

above 4d CFT on IR3,1.

The natural scales in these compactifications are the string scale `s, the five-dimensio-

nal Planck scale `p, and the radius of curvature of the spacetime RAdS. From these we can

form two independent dimensionless ratios, which are dual to dimensionless parameters in

the Yang-Mills theory: (RAdS/`p)
3 = N2 and (RAdS/`s)

4 = λ ≡ g2
YMN , where g2

YM is the

dimensionless coupling of the gauge theory.

In the large N limit, at fixed Yang-Mills coupling gYM, the low energy supergravity

limit of string theory on AdS5 × S5 is a good approximation. In this situation, local,

low-dimension single-trace operators Oa are dual to supergravity fields φa. Among these

operators are the 4d stress tensor, which is dual to the 5d metric in an appropriate gauge.

We will focus on perturbations by these operators, in particular operators dual to the 5d

metric and 5d scalar fields. Single-trace local operators with dimension of order λ1/4 are

dual to massive string states. Deformations by local multi-trace operators [24 – 26]-[27] can

be described by a particular deformation of the boundary conditions. The dual description

of Wilson line operators have also been constructed [9, 10].

– 7 –
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i 

+

i 
-

S+

i 
0

I+

I 
-

t

S-

Figure 1: A Penrose diagram for AdSd+1. The cylindrical boundary conformal to Sd−1 × IR. t is

the time in global coordinates. Σ± are spacelike slices at times t+ > t− (perhaps with t± → ±∞):

one may define initial and final states of quantum fields in the Heisenberg picture by writing a

wavefunction of field values on Σ− and Σ+, respectively. The patch of AdS covered by Poincaré

coordinates is the shaded region bounded by I+ ∪ I− ∪ i+ ∪ i− ∪ i0.

In standard treatments, which we will follow here, scalar fields in the 5d gravita-

tional theory are taken to be dimensionless, and the bulk effective action scales as N2 =

(RAdS/`p)
3. The mass m2 of these scalars is related to the conformal dimension ∆a,+ of

the dual operators by [22, 23]:

∆a,± = 2 ±
√

4 + R2
AdSm2 . (3.4)

The bound R2
AdSm2 ≥ −4, required for the operator in the CFT to have real conformal

dimension, coincides with the lower bound on scalar masses required for stability of the

bulk theory [28, 29].
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H
+

H-

i 
+

i 
-

i 
0

constant t

constant z

I

Figure 2: The Penrose diagram for AdSd in Poincaré coordinates. The boundary I is the timelike

boundary of AdS, and is conformal to IRd−1,1. H± are coordinate horizons. One may specify the

quantum states as t → ±∞ in the bulk with data on Σ± = i± ∪ H±.

3.2 Boundary behavior of classical fields in AdS

Consider small fluctuations of classical supergravity scalar fields, which are well-described

by linearized classical supergravity as N,λ → ∞. In Lorentzian signature, at fixed AdS

momentum (along S3 × IRt in (3.2), or along IR1,3
x

in (3.3)) there are two independent

solutions to the linearized equations of motion, which are classified by their boundary

behavior as z → 0/r → ∞:

φa
1(x, z) ∼ z∆a,−λa(x) + . . . (Poincare) φa

1(t,Ω, r) ∼ r−∆a,−λa(t,Ω) (global)

φa
2(x, z) ∼ z∆a,+φa

0(x) + . . . (Poincare) φa
2(t,Ω, r) ∼ r−∆a,+φa

0(t,Ω) (global) .(3.5)

A general solution to the linearized equations can be written (using Poincaré coordinates

for definiteness) as:

φa(x, z) = φa
1 + φa

2 . (3.6)

The solution φa
2 is normalizable with respect to the standard Klein-Gordon norm in AdS

spacetimes [7, 28, 29]. The solution φa
1 is normalizable for −4 ≤ R2

AdSm2 < −3, while for

R2
AdSm2 ≥ −3 it is not. As we describe below, the normalizable modes are candidates for

propagating modes in AdS, while the non-normalizable modes (and normalizable modes

when R2
AdSm

2 < −3) are candidate duals to perturbations of the Hamiltonian of the

quantum system.
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Higher-spin fields, such as the metric, will be dual to higher-spin operators on the

boundary, such as the stress tensor. For these modes, a similar story about the boundary

behavior applies. In the nonlinear supergravity theory, backreaction will couple metric

modes to the scalar modes. If m2 < 0 for the scalar masses, so that the dual operators

are relevant, the backreaction will be such that the metric remains asymptotically anti-de

Sitter, reflecting the conformal fixed point in the UV.

3.3 Quantum states in the CFT

Let us first consider the dynamics of the unperturbed CFT and its gravitational dual.

Assume that we are working at low energies and at large N,λ in the dual field theory, so

that the supergravity approximation in spacetime is valid.

Quantum states of the bulk supergravity at fixed time t can be represented via wave-

functionals of φa:

Ψ [φa(t)] , (3.7)

In the absence of boundary sources the states must be supported on field configurations

that have boundary behavior specified by the second line in (3.5) (we will discuss the

ambiguity for (mRAdS)
2 ≤ −3 at the end of this section.) This can be seen for small

fluctuations of the supergravity fields by building up the states via second quantization.

Because the AdS/CFT correspondence has a Hamiltonian version [23], the Hilbert

spaces of the gauge theory and the dual string theory must be the same. Furthermore, one

can define a Hamiltonian which has both a gauge theory and a string theory interpretation.

The vacuum can be defined as the state preserving the SO(4, 2) symmetry of the theory

(the conformal group of the CFT or the isometry group of AdS.) The duality map for

small fluctuations of the supergravity fields can be constructed explicitly by providing a

map between the Fourier modes of the CFT operators Oa and the creation and annihilation

operators of the dual supergravity fields φa, as in refs. [7, 23, 30, 31]-[32]. 3

For states defined at past and future infinity, as in (3.1), we can push the fixed-t slices

back to the far past and future, by defining spacelike hypersurfaces Σ± at constant global

or Poincaré time t±, as shown in figures 1 and 2, and sending t± → ±∞. Note that in

Poincaré coordinates, the t± → ±∞ limits of constant-time hypersurfaces are the unions

of the horizons H± and timelike infinity i±.

We are particularly concerned with the case that the supergravity states are semiclas-

sical coherent states in the bulk,4 described by macroscopic expectation values for the field

3In the interacting, finite-N theory, this map must be modified, as pointed out in [32]. To our knowledge,

the issues raised in that work have yet to be addressed.
4We use the term ”coherent state” in the sense described by Yaffe [33]. In [34] it is stated that the

large-N limit is not a classical limit in the usual sense, as it corresponds to a limit with a large number

of fields. However, ref. [33] gives a precise definition of a classical limit, and gives a convincing if not

complete set of arguments that the large N limit of a gauge theory is such a classical limit. The arguments

are independent of the ’t Hooft coupling, and matches our expectation that this limit is dual to the limit of

classical string theory in anti-de Sitter space. However, we believe that the arguments in [33] require that

one take N → ∞ with fixed ’t Hooft coupling λ. The limit in which g2
YM is fixed and small as N → ∞

should be a different limit, dual to quantum string theory in ten-dimensional flat space.
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operators φa(x, z). At leading order in 1/N , this expectation value satisfies the supergrav-

ity equations of motion and has the z → 0 behavior of the normalizable modes. At fixed

time t, such semiclassical coherent states are well-specified at this order in 1/N by a state

in classical phase space: that is, by the value of the field φa = φa
0 and the field momentum

πa ∼ φ̇a = πa,0 at fixed time t. The quantum wavefunctional

Ψφa
0 ,πa,0

[φa, t] ≡ 〈φa|(φa
0 , πa,0)〉 (3.8)

where |φa〉 is an eigenstate of the field operator, is peaked at these values, with a width in

phase space proportional to ~/N2.

Consider a solution φa(x, z, t) to the classical equations of motion with initial conditions

φa
− ≡ φa(t−), πa,− ≡ πa(t−). If we fix the quantum state |ψ−〉 at time t− to be a coherent

state |(φa
−, πa,−)〉 with the wavefunctionals of φa and πa peaked on these initial conditions

at time t, then to leading order in 1/N the system will evolve in time through classical

states peaked on φa(t), πa(t). Now, let |ψ+(t+)〉 = |(φa
+, πa,+)〉. The transition amplitude

A = 〈ψ+(t+)|ψ−(t−)〉 , (3.9)

will be negligible at leading order in 1/N unless (φa
+, πa,+) ∼ (φa(t+), πa(t+)) up to cor-

rections of order 1/N . Otherwise, there is no semiclassical trajectory contributing to A.

On the other hand, if the initial and final states are eigenstates |φa〉 of the field operator,

then the transition amplitude

Apos = 〈φa
+(t+)|φa

−(t−)〉 , (3.10)

will generically receive contributions from semiclassical paths contributing to it for a range

of φa
+, φa

−. These will be paths corresponding to solutions to the classical equations of

motion, specified by the initial and final field values φa(t±) = φa
±, as can be deduced from

a stationary phase approximation. To make contact with the coherent state approach, one

can use the fact that the coherent states form an overcomplete basis and may be used to

construct a resolution of the identity [33]:

1 =

∫
DφaDπa|(φa, πa)(t)〉〈(φa, πa)(t)| . (3.11)

Let φa
n(t), πa,n(t) be the classical positions and momenta at time t ∈ [t−, t+] consistent with

the initial and final conditions φa(t±) = φa
±. The label n takes care of the cases where there

may be more than one solution. If we insert (3.11) at time t ∈ [t−, t+], we will find that

at leading order in 1/N , the dominant contributions will come from the coherent states

specified by φa
n(t), πa,n(t).

In order to make contact with the work of [7, 17], consider the case in (3.1) for which

|ψ±〉 are classical coherent states, consistent with a single classical trajectory φa(x, t). Then

the matrix element of the operator in the dual CFT is specified by the boundary behavior

of the expectation value of the bulk supergravity field:5

〈ψ+|Oa(x)|ψ−〉 = ∆+φ0(x) , (3.12)

5For a certain class of operators this formula will receive corrections, as shown in [35].
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(Note that if z has length dimension 1, (3.12) is dimensionally correct.) To leading order in

the 1/N expansion, the classical ”coherent” states are completely specified by the expecta-

tion values of classical operators [33]. The classical operators are the single-trace operators

of the theory (they may be nonlocal in general.) At this order in 1/N , every such operator

is independent. For local single-trace operators, one must specify the expectation value for

every frequency and spatial momentum. Alternatively, one may specify φ0(x) in (3.12) for

all x. In the dual theory, with in the linear approximation to the supergravity equations

of motion, this specifies the classical solution completely. Note that general (highly quan-

tum) states are not well-characterized by the one point functions, as discussed for example

in [36].

To be more precise, we must consider the 5d metric coupled to the scalars. Therefore

the classical coherent states are |φa, πa; g
µν , πµν〉, and the eigenstates of the field operators

are |φa, gµν〉. The topology and geometry of Σ± is defined by the state. This topology

can be rather different from a spacelike slice of AdS spacetime: for example, the spacetime

may be an AdS-Schwarzchild black hole.

3.4 SUGRA field eigenstates and gravitational backreaction

The astute reader will worry about our use of eigenstates of the supergravity field operators.

Such states have overlap with eigenstates of the Hamiltonian states of arbitrarily high

energy, even for a mode of finite frequency. The point is that if πn is the conjugate

momentum for φn, the noninteracting Hamiltonian for this theory is:

H =
1

2
π2

n + ω2
nφ2

n + . . . (3.13)

If the uncertainly in φn vanishes, the uncertainty in πn is infinite, and so the energy

uncertainty is infinite. This is potentially disastrous when coupling the theory to gravity.

Nonetheless, we believe that we are safe so long as we calculate objects such as (3.10).

First, in the dual CFT there is no gravity, and so there seems to be no problem in principle

in considering states of as high an energy as we please. In the supergravity theory, a state

of fixed but large energy, made up of normalizable modes, will not change the asymptotic

structure of anti-de Sitter space. A black hole is the generic example of such a state, and

black hole solutions do not disturb the asymptotic structure at timelike infinity.

Secondly, from the spacetime point of view, |φ〉 is not a classical coherent state, and

it makes no sense to simply insert 〈φ|Tµν |φ〉 into Einstein’s equations in order to compute

the backreaction. Instead, one can decompose this state via (3.11):

|φ〉 =

∫
Dφ0Dπ0|(φ0, π0)〉〈(φ0, π0)|φ〉 ≡

∫
DφoDπ0|(φ0, π0)〉Ψ(φ0,π0)(φ) . (3.14)

Here Ψφ0,π0
(φ) is the wavefunctional for a classical coherent state with the expectation

values of φ, π peaked on φ0, π0, and the peak has width 1/N . The energy of such a state

is also sharply peaked at its classical value. In the classical limit, one should compute

the classical gravitational backreaction for each such classical state. In other words, (3.11)

should really be considered as an integral over classical states of the scalars and the metric.
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For each such classical state, time evolution will generate a classical spacetime. Some

of these spacetimes will be strongly gravitating. Generically they will be black holes of

arbitrarily high energy. But if we compute (3.10) for sufficiently weak fields, these highly

energetic states will not contribute.

3.5 Perturbing the CFT

Next, let us consider the case when the N = 4 SYM action is perturbed by local scalar

operators. The case where the action is perturbed by the stress-tensor (which is dual

to the bulk metric) will not be considered. The basic prescription is stated in [22, 23]: a

perturbation of the CFT Hamiltonian by a (spacetime-dependent) coupling λa(x) is dual to

performing the path integral over supergravity modes φa(x, r) with boundary conditions

at timelike infinity specified by the first line of (3.5). In the classical, large-N limit, a

given classical solution satisfying these boundary conditions will be a saddle point solution

describing a transition amplitude between two coherent states.

3.5.1 The limit of linearized supergravity

Let us first consider scalar fields which remain small in the interior of the AdS spacetime.

In this case bulk interactions can be neglected and a general solution φa(x, z) with the

z → 0 behavior dominated by the first line of (3.5) can be written as:

φa(x, z) =

∫
d4x′Ga

∂B(x, z;x′)λa(x′) + φv(z, x)

φv(x, z) →z→0 z∆+ φ̃(x) . (3.15)

Here G is the bulk-boundary propagator in the AdS vacuum, as defined in [23] and more

carefully in [37]. Note that even in the limit of linearized supergravity, the map between

and φ̃ and the field eigenstates at Σ± will depend on the coupling: this is because the first

term on the right hand side of (3.15) has support on Σ±. Therefore, to keep the states at

Σ± fixed while changing λ, we must also change φ̃. On the other hand, changing the state

will change φ̃ and not λ.

The normalizable piece which scales as φ2 in (3.5) is a linear combination of λ and

φ̃. In Poincaré coordinates, any linear combination is allowed when the momenta dual to

x is timelike, corresponding to the existence of propagating states for any such momen-

tum. For spacelike momenta there are not propagating states, and the normalizable and

non-normalizable modes must come in a specific linear combination in order to avoid a

singularity in the interior of AdS [22, 23].

We should note that many singularities are resolvable in that they reflect interesting

infrared physics in the dual quantum field theory, or D-brane sources in the interior of

spacetime. However, it is important that not all such singularities are resolvable [38]. We

leave this question, in the context of our discussion of holographic renormalization, for

future work.

In the end, in addition to the piece of φ2 which depends on λ, we may add a piece

that is specified by φ̃ in (3.15). (In global coordinates, the considerations above restrict
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the frequency decomposition of φ̃). This freedom has a reflection in the field theory: the

one-point function at finite λ in the noninteracting, large-N limit is [7]:

〈O(x)〉 = ∆+φ̃ + c∆+

∫
d4x′ λ(x′)

|x − x′|2∆+
, (3.16)

where c is a constant independent of λ, φ̃, and we have chosen to state the results in

Poincaré coordinates.

3.5.2 Perturbations in the interacting theory

We will be interested in relevant perturbations which grow in the infrared. For pertur-

bations which become large in the IR the bulk interactions cannot be neglected and the

spacetime can change drastically. This leads to two issues that we need to address.

First, for (3.1) to make sense as a generating functional for correlation functions, the

states should be independent of variations of the couplings λa(x). Given our experience

with solutions to the linearized equations, we might be tempted to define the states via the

expectation values of operators, which depends on the piece of the scalar fields behaving as

φ2 in (3.5), or via φ̃ in (3.15). However, once we take nonlinearities of classical supergravity

into account, the map between the quantum state and this data will depend on λ(x).

These problems are avoided (in the supergravity approximation) by defining the states

via wavefunctionals of φa (and gµν) on spacelike slices Σ± at fixed times t± [21], so long

as one only varies the couplings strictly in the interior of t±. Since we have defined a set

of states in the bulk in a way that is independent of the boundary conditions at timelike

infinity, duality implies we have defined a set of states which are independent of the 4d

couplings. However, describing these states as 4d field theory operators acting on the

vacuum may be very difficult. To begin with, the geometry and topology of Σ± may be

very different from a spacelike slice of AdS. For example, upon perturbing the theory by a

mass term, an ”infrared wall” may develop at finite radius [38].6 In such a situation, the

states must define a slice Σ± of the appropriate topology, or there will be no semiclassical

trajectory contributing to (3.1). Note that near the wall, one must specify more than the

values of the supergravity fields in order to define the state: classical supergravity breaks

down near such a wall, and the singularity is resolved by stringy and quantum effects.

3.6 The generating function of correlation functions

Given the prescription above, we can now construct all elements of (3.1). In the remainder

of this paper, we wish to consider (3.1) as a solution to the classical Hamilton-Jacobi

equations of the supergravity theory. In this formulation, the constants of motion will

essentially be the couplings and the states. This map will make sense if, for fixed |ψ±〉 and

λa, there is a unique classical saddle point in the path integral representation of (3.1) for

every small variation of λa. As we have stated above, this will not be true if we choose |ψ±〉
to be definite classical coherent states. Instead, we will choose |ψ±〉 = |φa(t±), gµν(t±)〉 to

6We would like to thank O. Aharony for correspondence on this issue.
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be eigenstates of the field operators. In this case, the generating function of correlation

functions in the large-N limit is the classical action

Z[{λ}] = exp

(
i

~
Scl[λ

a(x), (φa
−, gµν

− ), (φa
+, gµν

+ )]

)
, (3.17)

where Scl is the classical supergravity action evaluated between Σ±, on solutions to the

classical equations of motion such that

φ(x, r → ∞) ∼ r−∆−,aλa(x)φa(t±) = φa
± , gµν(t±) = gµν

± , (3.18)

and the metric is asymptotic AdS.

A small variation of (3.17) with respect to λ will lead to boundary terms at the timelike

boundaries only. Since the value of the bulk fields is fixed at Σ±, the variation there vanishes

by construction. In §5 this point will be important in claiming that Scl in (3.17) solves the

Hamilton-Jacobi equation. For more general states we can compute correlation functions

by integrating φ± over some wavefunctionals which are sharply peaked on states of finite

energy. This leads to the prescription in [21]. For example, one can suppress the high-

energy fluctuations discussed in §3.4 by choosing the states to be described by smooth (e.g.

gaussian) wavefunctionals peaked about the field eigenstates. In our proposal, one varies

the Hamiltonian, and then one integrates over initial and final states in order to suppress

the high-energy contributions. We are then assuming that the integral with respect to φ±

and the derivatives with respect to λ(x) commute.

Before closing we must point out an additional subtlety in this discussion. In the range

−4 ≤ m2 < −3, both φ1,2 in (3.5) are normalizable, and the identification of these with

λa, φ̃a can be reversed [7, 18]. The generating functions of correlation functions of the two

theories are related by a Legendre transformation [18, 39]. In this work we will take the

solution scaling as z∆− to correspond to the coupling, although it is not always natural to

do so (c.f. §2 of [17].)

4. Holographic renormalization and the Hamilton-Jacobi equation

In this section we will embark on a critical review and discussion of the results of [15, 16],

in order to better explain and eventually answer the questions raised in the introduction.

We will restate the results of those papers in some detail, as we will need to comment on

some specific points.

4.1 General discussion

As pointed out by various authors, beginning with [23, 37], computations of correlators

in both the bulk and boundary theories require regularization. The bulk calculations

contain divergent terms in SSUGRA arising from the r → ∞/z → 0 region of the spacetime.

There is by now a well-defined procedure for subtracting these divergences in the bulk and

interpreting this subtraction procedure as a choice of local ultraviolet counterterms in the

dual field theory (see for example [40] for a review and references.) In the field theory,
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the counterterms determine the beta functions of the theory. The result is a supergravity

expression for the objects driving the RG flow in the dual field theory.

This suggests a regularized version of the AdS/CFT correspondence [14]. Consider the

correspondence for the Poincaré patch of AdS spacetime. The classical Lagrangian of the

bulk supergravity theory is integrated over z > zUV, to define

Sreg(φUV, gUV; zUV) =

∫

z≥zUV

d5xL(φ, g) , (4.1)

where the Lagrangian is evaluated on solutions to the classical equations of motion, with

boundary values

φUV(x) = φ(x, zUV) ; gUV,µν(x) = gµν(x, zUV) . (4.2)

As with the ”unregulated” version of the correspondence, this prescription is well-defined in

Euclidean space because the classical equations of motion with boundary conditions (4.2)

have a unique nonsingular solution for z > zUV.7 After subtracting a set of counterterms,

Sreg is identified with the generating function of correlators in the dual theory, cut off at

an energy scale proportional to z−1
UV [2] (although it will correspond to a fairly complicated

cutoff prescription [14].) In this picture, φUV, gUV are dual to couplings in the cutoff

theory. The evolution of the fields φUV, zUV as one increases zUV is expected to be dual

to the renormalization group flow of the boundary couplings, as one lowers the UV cutoff,

and it can be shown that the evolution of this generating function with zUV is governed by

a kind of Callan-Symanzik equation [7].

The radial evolution of Sreg, φUV, and gUV with z can be described by the Hamilton-

Jacobi equation. In the asymptotic limit z → 0, the radial Hamilton-Jacobi equation can

be rewritten as a set of Callan-Symanzik equations for the boundary correlators [15, 16],

via a construction we now review and discuss.

4.2 The radial Hamilton-Jacobi equation

In classical general relativity coupled to matter, the Hamiltonian constraint H = 0 is a

Hamilton-Jacobi equation equation of the form K(a,b, t) = 0 (2.5). The evolution of the

fields φ, g can then be computed via either (2.2) or (2.4). We will use (2.2), and find that

it has a close relationship to the RG equations of the dual field theory.

De Boer et. al. consider the Euclidean AdS/CFT correspondence. The Euclidean

metric can be written using an ADM decomposition:

ds2 = R2
AdSN 2dr2 + R2

AdSgµν (dxµ + N µdr) (dxν + N νdr) , (4.3)

where N ,N µ are the lapse and shift functions. Locally, we can use the diffeomorphism

invariance to choose N = 1 and N µ = 0, and we will work in this gauge from now

on. (In the Poincaré patch of AdS the metric in this gauge is related to (3.3) by z =

RAdS e−r/RAdS .) However, after gauge fixing we must still impose the equations of motion

7Again, some additional singular solutions are allowed in Euclidean space. These have definite physical

interpretations and introduce no ambiguity in the interpretation of (4.1).
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for N and N µ. These give rise to the Hamiltonian constraint and the diffeomorphism

constraints, respectively.

Note that we have put an explicit factor of R2
AdS in front. With this normalization, the

factors of RAdS in the classical supergravity action appear in the combinations RAdS/`s =

λ1/4 and RAdS/`p,5 = N2/3, where λ = g2
YMN is the ’t Hooft coupling. However, it means

that gµν has mass dimension 2.

We write Hamilton’s principal function

S[(gµν(x), φ(x)),a] , (4.4)

as a functional of the configuration space variables (gµν(x), φ(x)), and the constants of

motion a. In doing so we must take symmetry under diffeomorphisms into account. Two

metrics which differ only by a coordinate transformation describes the same point in the

configuration space. The diffeomorphism constraint:

∇µ δS

δgµν
+

δS

δφa
∇νφ

a = 0 , (4.5)

ensures that S is invariant under 4-d coordinate transformations and therefore is a good

function on the configuration space.

The Hamiltonian constraint H = 0 is

1√
g

[
1

3

(
gµν δS

δgµν

)2

− gµλgνρ δS

δgµν

δS

δgλρ
− 1

2
Gab(φ)

δS

δφa

δS

δφb

]
= L , (4.6)

where

L =
√

ĝ

(
1

2
Gab(φ)ĝIJ∂Iφ

a∂Jφb + R̂ − V (φ)

)
, (4.7)

is taken to be the (bosonic) 5d Lagrangian for minimally coupled scalar fields φa and bulk

5d metric ĝIJ (I, J = 1 . . . 5). The constants of motion a in (4.4) parametrize solutions

to (4.6), (4.5); we will discuss them below. In a gravitational theory, S does not depend

explicitly on r. Eq. (4.6) is the Hamilton-Jacobi equation in this context. Once we have

solved for (4.6) for S, the equations of motion for g and φ following from Hamilton’s

equations are:

∂φa(x, r)

∂r
=

Gab(φ)√
g

δS

δφb(x, r)

∂gµν(x, r)

∂r
=

1√
g

(
−2

δS

δgµν(x, r)
+

2

3
gµνgλρ δS

δgλρ(x, r)

)
. (4.8)

4.3 Solving the Hamilton-Jacobi equations

Let us consider the case with only marginal and relevant perturbations of the CFT, fol-

lowing [15, 16]. We will also follow these references and consider solutions S in the region

r → ∞, dual to the UV regime of the field theory. In that limit the authors of [15, 16]

propose the following path to a solution. They write S and L in a derivative expansion

S = S(0) + S(2) + Γ , L = L(0) + L(2) , (4.9)
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where

S(0) =

∫
d4x

√
g U(φ)

S(2) =

∫
d4x

√
g

(
Φ(φ)R +

1

2
Mab(φ)gµν∂µφa∂νφ

b

)

L(0) = −
√

ĝ V

L(2) =
√

ĝ

(
R̂ +

1

2
Gabĝ

IJ∂Iφ
a∂Jφb

)
. (4.10)

Here R is the 4d Ricci curvature for g and (U , Mab, Φ) are some functions of (φ(x), gµν (x))

to be determined from (4.6). Γ is the nonlocal part of S. Note that in this discussion we are

assuming that the spacetime effective action L is captured by the zero- and two-derivative

terms. This is dual to the statement that we work to leading order in 1/N and λ−1/4.

Next, one solves (4.6) order by order in the derivative expansion. If we define

{A,B} ≡ 1√
g

[
1

3

(
gµν δA

δgµν

)(
gλρ δB

δgλρ

)
− gµλgνρ δA

δgµν

δB

δgλρ
− 1

2
Gab δA

δφa

δB

δφb

]
, (4.11)

then the Hamilton-Jacobi equation breaks up into a set of equations for each order in the

derivative expansion. These are written in [15, 16] as:

{
S(0), S(0)

}
= L(0)

2
{

S(0), S(2)
}

= L(2)

2
{

S(0),Γ
}

+
{

S(2), S(2)
}

= 0 . (4.12)

This scheme for solving the Hamilton-Jacobi equations via a derivative expansion is sensible

as r → ∞ because the various terms in (4.9) scale differently in this limit: terms with lower

number of derivatives diverge more rapidly. The result is a clean interpretation of S. S(0),

S(2) correspond to divergent counterterms; a study of explicit solutions to (4.12) shows

that they are local. Γ is the spacetime effective action minus these counterterms, that is,

the regularized generating function of correlators in the dual field theory.8

This procedure for solving (4.6) is adapted to the limit r → ∞. Furthermore, following

[15, 16], we have ignored the terms
{
S(2),Γ

}
and {Γ,Γ} that appear in the full Hamilton-

Jacobi equations, as they are negligible in the r → ∞ limit. An extension of the formalism

to finite r is desirable if one wishes to study trajectories of renormalization group flows

over a range of scales. We will return to this issue in §5.5.
Even in this limit, there is an additional interpretational problem with this method

for solving the Hamilton-Jacobi equations. As we discussed in §2, there are many possible

solutions to the equations of motion, corresponding to different choices of constants of

motion a. On the other hand, if we desire solutions which are nonsingular in the interior

8The second term in the last line of (4.12) corresponds to the gravitational anomaly in four dimensions,

and the first term includes the expectation value of the trace of the stress tensor. Therefore it makes sense

to assign Γ dimension 4 in the derivative expansion. For a generalization to other dimensions see [19].
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r < ∞ of Euclidean AdS spacetimes, no such freedom exists [23]. The constants of motion

a represent the states in the Lorentzian correspondence. The QFT dual of this will become

apparent in §5. Correlation functions in Euclidean space rotate to vacuum correlators: in

other words, a particular state is selected.

The classical action (4.1) will solve the Hamilton-Jacobi equation and generate solu-

tions which are nonsingular in the interior. For the formalism of [15, 16] to match the

results of [22, 23], it must be true that as r → ∞ (zUV → 0), (4.1) can be written as (4.9)

and is a solution to (4.12).

All of this said, other solutions to the Hamilton-Jacobi equations exist, even in the

case of Euclidean signature. The solution to these equations will not have an interpretation

as the generating function of correlation functions. We will discuss one such solution, and

its interpretation, in §5.4.

4.4 Relation to the renormalization group

4.4.1 Beta functions

Near the boundary r → ∞ the bulk fields behave as φa ∼ e−∆−r and are dual to the

coupling constants of the field theory. The evolution of φ with r should be related to

the running of the dual coupling under the renormalization group. The bulk fields are

in general spacetime dependent, so we should work with spacetime-dependent couplings

[41, 42]. However, if the couplings are slowly varying in x, then they can be treated as

constant in the UV, and we should recover the standard RG equations in that limit. The

bulk dual of this statement is that as r → ∞, S(0) dominates over the higher-derivative

and nonlocal terms in S. Therefore, let us first consider solutions which are constant in x.

The first equation in (4.12) is

V =
1

3
U2 − 1

2
Gab∂aU∂bU , (4.13)

and determines U in terms of V (up to terms of total dimension 4). Eq. (4.8) then becomes

∂rφ
a = Gab∂bU

∂rgµν = −1

3
U(φ)gµν , (4.14)

where both ∂rφ and ∂rg have corrections which can be neglected near the boundary. The

second equation in (4.14) can be solved with the ansatz gµν(r,x) = ρ2(r,x)g̃µν (x). Here g̃

is dimensionless and independent of r, while the scale factor ρ has mass dimension 1 and

satisfies

∂r ln(RAdSρ) = −1

6
U(φ) . (4.15)

The study of bulk probes in the AdS/CFT correspondence shows that the rescaling in the

boundary theory is simply related to the rescaling of g in the bulk. Furthermore, since the

solutions φ1 in (3.5) dominate as r → ∞, we can identify the coupling λa at some UV scale

ρ with the dual field φ(r(ρ)), up to a power of ρ.9 Following these two observations, de

9If m2R2
AdS ≤ −3 then this is not always true, as noted in §2.2. However, in Euclidean space, φ1 and φ2

are proportional in Fourier space, and related by convolution with the boundary Green function in position

space (c.f. [18].)
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Boer et. al. propose that the beta function be defined as:

βa ≡ ρ∂ρφ
a =

1

∂r ln(ρ)
∂rφ

a = − 6

U(φ)
Gab∂bU(φ) . (4.16)

Because φ ∼ z∆−,aλa(x) is dimensionless, we identify βa as the beta functions for the

dimensionless coupling. (The difference between this and the beta function for λ is that

the latter will have no linear term.)

Let us study the solutions to these equations in more detail. The spacetime effective

potential has the form

V = 12 − 1

2
m2

a(φ
a)2 + gabcφ

aφbφc . (4.17)

If Gab = ηab + O(φ2) then the solution for U is given by [15, 16]:

U = −6 − 1

2
ϑaφ

aφa +
ga
bc

8 − ∆a − ∆b − ∆c
φaφbφc . (4.18)

(Note that in [15, 16] the sign in front of the first term of the right hand side of (4.18) is

opposite to that in (4.17). We have checked that the signs here are self consistent.) Here

ϑa is related to m2
a by

ϑ2
a − 4ϑa = m2

a . (4.19)

Choosing the root ϑa = 4 − ∆a, leads to the beta function:10

βa = −(4 − ∆a)φ
a − ga

bc

8 − ∆a − ∆b − ∆c
φbφc . (4.20)

If the OPE coefficients

Ob(x)Oc(y) ∼ Ca
bc

|x − y|∆b+∆c−∆a
Oa(y) , (4.21)

are equal to

Ca
bc = − 2ga

bc

S3 (8 − ∆a − ∆b − ∆c)
, (4.22)

where S3 is the volume of a unit 3-sphere, then (4.20) is precisely of the form derived, for

constant couplings, in for example [43]. This is an unsurprising answer, as we expect the

three-point functions in the bulk to be related to the boundary OPEs.

The actual relationship between gabc and the boundary OPE coefficients was calculated

in [37]. They differ by a complicated ratio of gamma functions. However, unless the OPEs

in question are ”resonant”, such that ∆b + ∆c − ∆a = 4, the quadratic term in the beta

functions are scheme dependent. In fact, standard RG schemes such as minimal subtraction

will lead to quadratic terms in the beta function only if there are associated divergences,

which happens when ∆b + ∆k − ∆a ≥ 4 in (4.21).11 At best we only expect universal

answers at quadratic order in λ and to zeroth order in 4−∆a = εa ¿ 1. Our conclusion is

10In §5.4 we will discuss the other root of (4.19).
11See for example [44] for an extensive discussion of the scheme dependence of conformal perturbation

theory in two dimensions. Most of the basic lessons lift to higher dimensions.
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that the holographic RG calculation outlined in [15, 16] correspond to a particular choice

of scheme that is closer to the schemes used in refs. [43, 45]. These schemes are natural

and useful in conformal perturbation theory; in particular they are useful for studying the

approach to nontrivial infrared fixed points.

4.4.2 The Callan-Symanzik equation

According to the AdS/CFT correspondence (3.1),

Γ = ln (Z) (4.23)

is the generating function of connected correlation functions, in the limit r → ∞ or z → 0,

if we assume that S = SSUGRA. According to de Boer et. al., the asymptotic correlation

functions are:

〈Oa1
(x1)Oa2

(x2) . . . Oan(xn)〉c
=

?

1√
g(x1)

δ

δφa1(x1)
. . .

1√
g(xn)

δ

δφan(xn)
Γ , (4.24)

where 〈. . .〉c is the connected piece of the correlator. However, with our normalization,

φ is dimensionless and so δ/δφ(x) has mass dimension d. gµν has mass dimension 2, so

that the right hand side above is dimensionless. If we wish Oak
to correspond to operators

of dimension ∆+,ak
, we need to modify this expression. We conjecture that the correct

asymptotic expression is:

〈Oa1
(x1)Oa2

(x2) . . . Oan(xn)〉c =
ρ∆+,a

√
g(x1)

δ

δφa1(x1)
. . .

ρ∆+,an

√
g(xn)

δ

δφan(xn)
Γ

=
ρ−∆−,a1√

g̃(x1)

δ

δφa1(x1)
. . .

ρ−∆−,an

√
g̃(xn)

δ

δφan(xn)
Γ . (4.25)

As evidence, we will find below that the Hamilton-Jacobi equations imply the statement

that the left hand side of (4.25) satisfies the Callan-Symanzik equation. Furthermore,

ρ → 1/z as z → 0, and φa → z∆−,aλa. Therefore, using (3.5), we can rewrite (4.25) as:

〈Oa1
(x1)Oa2

(x2) . . . Oan(xn)〉c =
1√

g̃(x1)

δ

δλa1(x1)
. . .

1√
g̃(xn)

δ

δλan(xn)
Γ , (4.26)

which is the expected definition of the correlation functions.12

The third equation in (4.12) essentially is a local form of the Callan-Symanzik equation

[41, 42]. Using the above result, it becomes:

1

Z

[
ρ(x)

δ

δρ(x)
+ βa(x)

δ

δφa(x)

]
Z = − 6

√
g

U (φ(x))

{
S(2)(x), S(2)(x)

}
. (4.27)

The right hand side is the contribution of the conformal anomaly [19, 46, 47]. Note

that (4.27) is the asymptotic (and therefore local) form of the CS equation. For finite

r, (4.27) becomes non-local.

12Eq. (4.26) also follows from rewriting a general conformal correlation function in a diffeomorphism

invariant way using the metric gµν instead of g̃µν (which corresponds to (4.24)) and then plugging the

relation gµν = ρ2(r)g̃µν .
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By varying (4.27) with respect to φa(x) and using (4.25), we arrive at a local form of

the CS equations:
[
ρ(x)

δ

δρ(x)
+

∑

b

βb(x)
δ

δφb(x)

]
〈Oa1

(x1) . . . Oan(xn)〉c −

n∑

k=1

∫
ddxγbk

ak
(x − xk)〈Oa1

(x1) . . . Obk
(x) . . . Oan(xn)〉c = 0 , (4.28)

where

γb
a(x− xb) = −(4 − ∆a)δ

b
aδ(x − xa) +

δ

δφa(xa)
βb(φ(x)) . (4.29)

This definition of the anomalous dimension gives the deviation of the operator dimension

from that at the UV fixed point, rather than the deviation from that of a free scalar.13

As pointed out in [42], (4.28) can be thought of as the Callan-Symanzik equation for

spacetime-dependent couplings, first described by Osborn [41]. The beta functions βa are

the coefficients of the trace of the stress tensor: Θ(x) = −∑
a βaOa. We can transform this

equation into one which describes the behavior of Γn as one rescales all of its arguments xi.

The essential point is that if a function f which itself has mass dimension ∆ is a function

of n variables with definite mass dimension, an infinitesimal rescaling of any k of these

variables can be traded for an infinitesimal rescaling of the other n − k variables plus an

overall rescaling of f . This statement holds in the presence of additional constraints on the

variables, so long as one imposes the constraints at the end. Write the n-point function

in (4.25) as:

Γn ≡ 〈Oa1
(x1) . . .Oan(xn)〉

= Γn(xi, ρ(x), g̃µν (x), φ(x)) (4.30)

where Γ is taken to be a nonlocal functional of ρ,g̃, and φ. Note that there are additional

dimensionful parameters implied by the spacetime dependence of ρ, g̃, and φ. Therefore

we can relate a rescaling of ρ itself for a rescaling of xi and the variation of the ρ,g̃, and φ

under a rescaling of the coordinates they depend on.

In the end, if we integrate (4.28) over x and apply the arguments above, we find that:

n∑

k=1

xk · ∂

∂xk
〈Oa1

(x1) . . . Oan(xn)〉c

+

∫
d4y

[
∑

b

(
−y · ∂

∂y
φb(y) + βb(φ)

)
δ

δφb(y)

]
〈Oa1

(x1) . . . Oan(xn)〉c

−
∫

d4y

[(
y · ∂

∂y
ρ(y)

)
δ

δρ(y)
+ δg̃µν(y)

δ

δg̃µν (y)

]
〈Oa1

(x1) . . . Oan(xn)〉c +

k∑

n=1

(
δbk
ak

∆ak
− γ̃bk

ak
(φ)

)
〈Oa1

(x1) . . . Obk
(xk) . . . Oan(xn)〉c = 0 . (4.31)

13Note that in [15, 16], the term 4 − ∆ is missing from γ. It comes from commuting 2gµν δ
δgµν through

ρ∆

√
g

δ
δφ

.
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where

γ̃b
a = −(4 − ∆a)δ

b
a + ∇aβ

b (4.32)

is the anomalous dimension matrix, and the variation of g̃ under rescaling is:

δg̃µν = x · ∂xg̃µν − xλ∂µg̃λµ − xλ∂ν g̃µλ . (4.33)

If φ and ρ are constant, eq. (4.31) is the standard form of the renormalization group

equations, which follows directly from the Ward identities for broken scale invariance (see

for example [44, 45].) The beta functions are the coefficients of the trace of the stress

tensor: Θ(x) = −∑
a ρ∆−,aβaOa (where the factor of ρ ensures that Θ has dimension d.)

In §5.2, we will show by direct calculation in the perturbed CFT that the additional terms

in (4.31) for spacetime dependent φ, ρ in (4.31) must also appear.

4.4.3 Caveats

We close this section with two comments. First, in discussions of the holographic renor-

malization group [14, 15]-[16], it is assumed that (4.25) at finite z is a good definition of

the correlation functions in a theory cut off at the energy scale Λ = 1/z. This statement

requires some care. As we will discuss in §5.5, there is not a direct relationship between

φ(x, zUV) and the coupling λ(x) at finite zUV: rather, φ is determined by both the cou-

pling and the state of the theory. In the Euclidean calculations, φ will be a function of

the couplings; we can therefore imagine a scheme in which φ is the coupling, although

this may be related to more standard schemes by a complicated and possibly nonanalytic

redefinition of the couplings.

Secondly, the choice of solution to the Hamilton-Jacobi equations for the right hand

side of (4.25) changes the interpretation. In general the solution S is a function of constants

of motion a (as written in (4.4)) . When one takes the derivatives in (4.24), one is varying

over classical solutions with the constants a held fixed. The result depends on the definition

as well as the numerical value of the constants of motion. On the other hand, the Euclidean

correlators should be uniquely determined by the couplings. The assumption here, and in

other works on holographic renormalization, is that the right hand side of (4.25) should be

the nonlocal part of Sreg in (4.1).

5. Holographic RG in Lorentzian signature

In this section we will generalize the results of [15, 16] and of §4 to the Lorentzian version of

the AdS/CFT correspondence. The essential difference is that normalizable, nonsingular

solutions to the equations of motion exist, so that the coefficient λa defining the asymptotic

behavior φa →z→0 z∆−,aλa no longer unambiguously defines solutions to the equations of

motion. The dual of this statement is that correlation functions in the perturbed CFT will

depend on both the couplings and the state of the field theory [7, 17].

This leads to our solution to the main question posed in the introduction. Solving the

second-order equations of motion for supergravity fields via the Hamilton-Jacobi method

involves two steps. The first step is to solve the Hamilton-Jacobi equations. The solutions
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are functions of the values of the fields at fixed z; the functional form will depend on the

state of the system. The second step is to solve (the first-order) Hamilton’s equations,

which requires that one specifies the values of the fields at fixed z. In the field theory dual,

the first step is dual to solving the Callan-Symanzik equations, and to computing the beta

functions. We will see that the Callan-Symanzik equations and their solutions are modified

by the choice of state in precisely the same way that the Hamilton-Jacobi equation is. The

second step is roughly dual to solving the first-order equations Λ∂Λλa = βa specifying the

flow of the couplings with scale. (We say roughly because the precise duality defines a flow

of a combination of the couplings and the one-point functions of the associated operators,

as we will discuss.)

Thus, despite the apparent first-order nature of the RG equations, they contain all of

the information needed to specify any desired solution to the dual supergravity equations

of motion. In §5.1-§5.3 we show this in detail in the limit z → 0. In §5.4 we discuss a

different class of solutions to the Hamilton-Jacobi equations and discuss their interpretation

in terms of a quantum field theory with an IR cutoff. In §5.5 we discuss the extension of

holographic RG deep into the infrared of the field theory. In §5.6 we discuss the bulk

picture of Wilsonian renormalization.

5.1 The Hamilton-Jacobi functional in Lorentzian signature

As in §4.2, the spacetime equations of motion can be solved by specifying the fields at

some constant radial coordinate — r in (3.2) and z in (3.3) — and solving the radial

Hamilton-Jacobi equations. Any solution to the Hamilton-Jacobi equation S, corresponds

to a choice of some constant of motion a. As in §4, one can try to solve the HJ equation

with the on-shell action SSUGRA. However, for a general constant of motion a, by varying

SSUGRA along the set of classical solutions with fixed a, the expression π(φ) = δS
δφ for the

classical momentum fails due to boundary terms at Σ± (see figures 1 and 2).14 SSUGRA

will solve the HJ equation if and only if there is a choice of constant of motion a for which

the variation of SSUGRA do not produce boundary terms at Σ±. As explained in §3, that

is exactly the case when the state is held fixed. We therefore conclude that the on-shell

SUGRA action cut off at some distance from the boundary

S(φUV, gµν
UV, rUV;a) =

∫ rUV

drd4x
√

gL(φ, gµν) , (5.1)

evaluated on a family of classical solutions interpolating between fixed initial and final

states, solves the bulk radial Hamilton-Jacobi equation. Furthermore, (5.1) generates the

boundary correlation functions cut off at some scale l(rUV):

1√
g(x1)

δ

δλa1(x1)
· · · 1√

g(xn)

δ

δλan(xn)
S = 〈ψ+|T [Oa1

(x1) . . .Oan(xn)] |ψ−〉c . (5.2)

Here ψ± denote the eigenvalues of the scalar fields and the metric at times t±, and the

subscript c denotes the connected correlation functions. In these equations a represents

14This boundary is a spacelike slice at any r(z) in global (Poincaré) coordinates. In Poincaré coordinates,

in the limit t± → ±∞, these boundaries include the z → ∞ surface H− ∪ H+ as well.
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the data which specifies the eigenstates of the bulk fields at Σ±. λa(x) are the dimensionful

couplings. In §5.5 we will argue that the relationship between φ and λ are nontrivial; near

the boundary of AdS, however, they will be related by a power of the scale factor of the

metric, as in §4.
The constant of motion b is given by (2.4). Since the classical solution is uniquely

determined by the initial and final states and the UV couplings [21], the constant of motion

b is a function of the states and the UV coupling (and does not depend on the radial

coordinate.)

We are now close to a solution of problem (1) in §1. Next, in §5.2 we will write the

Callan-Symanzik equation for matrix elements of time-ordered products between arbitrary

states. Finally, in §5.3 we will show that the same Callan-Symanzik equations arises as

part of the Hamilton-Jacobi equations for S. This will complete our solution.

For the remainder of this section we will stick to Poincaré coordinates for simplicity’s

sake.

5.2 The Callan-Symanzik equation for nontrivial matrix elements

As we have just intimated, the bulk data which completely specify a solution to the su-

pergravity equations of motion are dual to the couplings and state of the field theory. The

non-vacuum states are the new ingredient in the Lorentzian version of the correspondence.

To understand holographic renormalization, we must therefore derive the Callan-Symanzik

equation for general matrix elements of time-ordered products of operators:15

Cn;± = 〈ψ+(t+)|T [O1(x1) . . .On(xn)] |ψ−(t−)〉 , (5.3)

for d-dimensional conformal field theories perturbed by the interaction Hamiltonian

Sint =
∑

a

∫ t=t+

t=t−

ddxε∆a−dua(x)Oa(x) , (5.4)

where Oa are marginal and relevant operators of dimension ∆a, ε is a cutoff scale with

dimensions of length, and ua are spacetime-dependent dimensionless couplings (as in [41].)

We will assume that the operators Ok in (5.3) are scalar operators of definite dimension ∆k

at the UV fixed point and that the background is flat d-dimensional Minkowski space. In

general, however, the spacetime dependence of the couplings in (5.4) means that couplings

to nonscalar operators will be generated along the RG flow. The sum in (5.4) should

be taken to include these couplings. A more elegant treatment would be to consider the

couplings to higher-spin operators as background gauge, metric, and tensor fields after the

fashion of [41]. We leave this for future work.

The starting point is the statement that:
∑

k

(
xk · ∂xk

+ D̂k

)
〈ψ+|T (O1(x1) . . .Ok(xk) . . .On(xn)) |ψ−〉

= i
∑

k

〈ψ+|T (O1(x1) . . . [Q(tk),Ok(xk)] . . .On(xn)) |ψ−〉 (5.5)

15We would like to thank C. Beasley and H. Schnitzer for discussions about this derivation.
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Here Q(tk) =
∫

J0 is the charge corresponding to the scale current Jν = xµT ν
µ :

Q(tk) =

∫

t=tk

dd−1xxµT 0
µ (5.6)

with Tµν the stress tensor. D̂ is the dilatation operator defined by

Oa(x + λx) = Oa(x) + λx · ∂xOa + λD̂Oa(x) + . . . , (5.7)

and the subscript on D̂ in (5.5) indicates which of the Oa it acts on.

Now

〈ψ+|T (O1 . . . (OkQ(tk)Ok+1 −OkQ(tk+1)Ok+1) . . .On)|ψ−〉

=

∫ tk

tk+1

〈ψ+|T (O1 . . .Ok∂0Q(t)Ok+1 . . .On)|ψ−〉 , (5.8)

which we can combine with (5.5) to write:

∑

k

(
xk · ∂xk

+ D̂k

)
〈ψ+|T (O1(x1) . . .Ok(xk) . . .On(xn)) |ψ−〉

= −i

∫ t+

t−
dt〈ψ+|T (∂tQ(t)O1 . . .On) |ψ−〉

+i〈ψ+|Q(t+)T (O1 . . .On) |ψ−〉 − i〈ψ+|T (O1 . . .On)Q(t−)|ψ−〉 . (5.9)

Note the presence of the two extra boundary terms in the last line. These vanish when

|ψ−〉 = |ψ+〉 = |0〉, where |0〉 is the scale-invariant vacuum state.

We can rewrite
∫

dt∂tQ(t) =
∫

ddx∂t(x
µTµ

0) via integration by parts:

∫
ddx∂t(x

µTµ
0) =

∫
ddx

(
T0

0 + xµ∂0Tµ
0
)

=

∫
ddx

(
T 0

0 − xµ∂iTµ
i + xµ∂νTµ

ν
)

=

∫
ddx

(
T 0

0 + ∂i(x
µ)T i

µ + xµ∂νTµ
ν
)

=

∫
ddx

(
T µ

µ + xµ∂νTµ
ν
)

≡
∫

ddx (Θ + xµ∂νTµ
ν) , (5.10)

where we have assumed that the scale current vanishes at spatial infinity, or that the spatial

directions have no boundary. The spacetime dependence of the couplings u implies that

the stress tensor is not conserved; thus, the last equation will not in general vanish.

Now, we set16 Θ = −βaOaε
∆a−d, ∂a ≡ ∂

∂ua , and ∂aOk = Bb
akOb, to find that:

∫
ddx〈ψ+|T (Θ(x)O1 . . .On) |ψ−〉 = −iβa∂a〈ψ|T (O1 . . .On)|ψ−〉

+i
∑

k

βbBa
kb〈ψ+|T (O1 . . .Ok . . .On)|ψ−〉 − βb〈ψ+|B̂bT (O1 . . .On)|ψ−〉

+〈ψ+|T (O1 . . .On)B̂b|ψ−〉βb , (5.11)

16The factor of the cutoff is needed for Θ to have dimension d.
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where i∂b|ψ〉 = B̂b|ψ〉, −i∂b〈ψ| = 〈ψ|B̂. With the factor of i, B̂ is Hermitian.

Finally, if we define:

D̂aOa = Γk
aOk

γa
k = Γa

k − βbBa
kb

K̂(t) =
[
Q(t) + βbB̂b

]
(5.12)

then the Callan-Symanzik equation is:

∑

k

xk · ∂xk
〈ψ+|T (O1 . . .On)|ψ−〉 +

∑

k

γa
k〈ψ+|T (O1 . . .Oa(xk) . . .On)|ψ−〉

+βa∂a〈ψ+|T (O1 . . .On)|ψ−〉 +

∫
ddx〈ψ+|T (xµ∂νTµ

ν(x)O1 . . .On) |ψ−〉

= i〈ψ+|K̂(t+)T (O1 . . .On)|ψ−〉 − i〈ψ+|T (O1 . . .On)K̂(t−)|ψ−〉 . (5.13)

The last term on the second line is the local modification of the Callan-Symanzik equation

due to the spacetime-dependent couplings. The two boundary terms on the final line are the

modification of the Callan-Symanzik equation for general matrix elements of time-ordered

products of operators.17

To match (4.31) more precisely, let us consider the contribution of the scalar operators

in (5.4) to xµ∂νTµ
ν . The arguments of Noether’s theorem applied to the perturbed CFT

leads to the equation

xµ∂νTµ
ν = −

∑

a

ε∆−d(x · ∂xua(x))Oa(x) . (5.14)

Now, if we define

β̃a = βa − x · ∂xua(x) , (5.15)

for the scalar operators, and replace β with β̃ in (5.12), then we can write the Callan-

Symanzik equation in the form:

∑

k

xk · ∂xk
〈ψ+|T (O1 . . .On)|ψ−〉 +

∑

k

γa
k〈ψ+|T (O1 . . .Oa(xk) . . .On)|ψ−〉

+β̃a∂a〈ψ+|T (O1 . . .On)|ψ−〉 +

∫
ddx〈ψ+|T (xµ∂νδTµ

ν(x)O1 . . .On) |ψ−〉

= i〈ψ+|K̂(t+)T (O1 . . .On)|ψ−〉 − i〈ψ+|T (O1 . . .On)K̂(t−)|ψ−〉 , (5.16)

where δT is the contribution of the non-scalar operators. Note that the shift from β to β̃

is precisely what we find in the second line of (4.31).

5.3 Lorentzian HJ/CS correspondence

Next, we must understand how the Hamilton-Jacobi equations are related to the Callan-

Symanzik equations. To do so, we will carry over the strategy of §4.3 for solving the

17If we define the states as integrals of local operators acting on the vacuum, then these last two terms

can be derived from the Callan-Symanzik equation for vacuum correlators.
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Hamilton-Jacobi equations. The major difference is that we must include the dependence

on the states.

As in §4, the SUGRA action can be written in a derivative expansion. The regularized

generating function Γ is then obtained by the subtraction of some local counterterms S(0)

and S(2): Γ = S − (S(0) + S(2)). Apart from the signature difference, the functional form

of the bulk Lagrangian is the same as the Euclidean one. For general states there may be

additional boundary terms ψ± at Σ± in the supergravity action [21]. However, if we work

with eigenstates of the supergravity field operators at Σ±, these boundary terms will not be

present. Lorentzian signature adds no additional ambiguities to the solutions of the first two

equations in (4.12). Therefore, the functional form of the local counterterms S(0), S(2) (4.10)

are the same as in the Euclidean case. Furthermore, the functional differential equation

in the last line of (4.10) is the same. All of the dependence on the constant of motion a

(and therefore on the state) is contained in the choice of solutions Γ to (4.10). The field

theory dual of this statement is that near the UV fixed point, the local beta functions are

independent of the state, while the correlation functions depend strongly on the states,

especially when the operators are widely separated.

To relate the modified Callan-Symanzik equation (5.16) to the HJ equation, we should

adapt the derivation of (4.31) to the case of Lorentzian signature. Let us write the boundary

coordinates as x = (t, ~x), where t is the time direction. The correlation function written

as a function of all of the dimensionful parameters of the problem is:

Γn ≡ 〈ψ+(t+)|T (O1(x1) . . .On(xn))|ψ−(t−)〉c
= Γn (xi, ρ(x), g̃µν (x), φ(x), ψ+, t+, ψ−, t−) (5.17)

Using the same strategy used in §4.4, we find that:

n∑

k=1

xk · ∂

∂xk
〈ψ+|Oa1

(x1) . . . Oan(xn)|ψ−〉c

+

∫
ddy

[
∑

b

(
−y · ∂

∂y
φb(y) + βb(φ)

)
δ

δφb(y)

]
〈ψ+|Oa1

(x1) . . . Oan(xn)|ψ−〉c

−
∫

ddy

[(
y · ∂

∂y
ρ(y)

)
δ

δρ(y)
+ δg̃µν

δ

δg̃µν(y)

]
〈ψ+|Oa1

(x1) . . . Oan(xn)|ψ−〉c

+

k∑

n=1

(
δbk
ak

∆ak
− γ̃bk

ak
(φ)

)
〈ψ+|Oa1

(x1) . . . Obk
(xk) . . . Oan(xn)|ψ−〉c

=

[∫
dd−1~ydz

{[(
~y · ∂

∂~y
+ z∂z

)
ψ−

]
δ

δψ−
+

[(
~y · ∂

∂~y
+ z∂z

)
ψ+

]
δ

δψ+

}

−t−
∂

∂t−
− t+

∂

∂t+

]
〈ψ+|Oa1

(x1) . . . Oan(xn)|ψ−〉c . (5.18)

The first four lines of this equation are as before. We claim that the final two lines in (5.18)

should be precisely dual to the large-N limit of the final line in (5.13), (5.16). To see this,

let us consider the supergravity dual of Q(t−)|ψ−〉. In the bulk, the state is specified by

a set of functions φa
−(~x, z) where z is the radial coordinate along Σ−. These functions are
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the eigenstates of the field operators. One may decompose these field operators locally into

modes labelled by the ~x-momentum k, and the frequency ω. In the bulk, the equations

of motion relate the ~k, ω-dependence to the ~x, z dependence. This map has been made

explicit in the large-N limit of unperturbed AdS spacetimes in [7, 32]. In general all we

need is that such a map exists, and that the creation operators of the bulk fields are a

function of the Fourier modes of the boundary operators.

Now on the boundary, Px = xiP̂i ≡
∫

dd−1~xxiT 0
i generates rescalings of the coordinates

~x. It also rescales the Hamiltonian: the Hamiltonian is an operator with mass dimension

1, implying that [Q(t−),H(t−)] = iH(t−). Since H commutes with itself, this implies that

[Px,H] = iH. Now, |ψ−〉 is an eigenstate of some function of the Fourier modes of the

local operators of the boundary theory. The frequency of these operators is defined by the

equation

[H,Oω ] = iωOω , (5.19)

and the momenta by their x-dependence. The result is that Px rescales all of the four-

momenta of boundary operators. The map to the bulk implies that Px|ψ−〉 acts via the

penultimate line in (5.18).

Finally, we can use (3.1) to note that

〈ψ+(t+)|T exp

(
i

~

∫ t=t+

t=t−

ddx
∑

a

λa(x)Oa(x)

)
t−H(t−)|ψ−(t−)〉 = t−dt−Z = t−∂t−Z .

(5.20)

Therefore, if the duality holds, the explicit time derivatives in the last line of (5.18) should

map to the contributions from t±H(t±) IN the final line of (5.13).

To see how the bulk and boundary rescalings of the states map to each other, consider

the example of the large-N limit of the unperturbed CFT, in the approximation that we

can ignore bulk interactions, and as the cutoff is taken to zero. Let the state be a coherent

classical state in which a single local, single-trace operator O has a macroscopic expectation

value:

〈φ+|O(x)|φ−〉 = φ̃(x) = Γ1(x) , (5.21)

In the unperturbed theory, the spacetime equations of motion imply that φ̃(x) is a linear

functional of φ+, φ−, and has dimension ∆+. This means that we can write:

φ̃(x) =
∑

ε=±

∫

tε

dd−1~ydz Fε(x; ~y, z, t+, t−)φε(~y, z) (5.22)

where G is a function of dimension ∆+d. Therefore, dimensional analysis implies that the

final line in (5.18) acting on Γ1 is:

[∫
dd−1~ydz

{[(
~y · ∂

∂~y
+ z∂z

)
φ−

]
δ

δφ−
+

[(
~y · ∂

∂~y
+ z∂z

)
φ+

]
δ

δφ+

}

−t−
∂

∂t−
− t+

∂

∂t+

]
φ̃(x;φ+, t+, φ−, t−) =

(
x ·

~∂

∂x
+ ∆

)
φ̃ . (5.23)

The required that we rescaled both the arguments of φ± as well as t±.
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Now, let us compare this to the right hand side of (5.13). We take the basis of operators

such that B̂a|φ±〉 = 0. Conformal invariance implies that Q(t) is constant in time, so that

we can write:

i〈φ+|Q(t+)O(x)|φ−〉 − i〈φ+|O(t, x)Q(t−)|φ−〉

= i〈φ+|[Q,O(x)]|φ−〉 = 〈φ+|
(
x · ∂

∂x
+ ∆

)
O(x)|φ−〉 =

(
x · ∂

∂x
+ ∆

)
φ̃ . (5.24)

This is precisely the variation of φ̃ that we find in (5.18), (5.23). Note further that (5.18)

has only been derived for classical states in the large-N limit. For such states in the field

theory, the action of Q on the states will be specified by the scale transformation of the

one-point functions.

We have solved the main problem raised in the introduction. Let us summarize the

basic point. The Hamilton-Jacobi formalism involves two sets of equations. One set of

equations is Hamilton’s equations for the field variables φ(x, z), (roughly) z∂zφ = δS
δφ .

Studies of holographic RG in Euclidean signature indicate that these equations are mapped

into the standard first-order RG flow equations Λ∂Λλa = βa, at least near the timelike

boundary of the 5d spacetime. Given the HJ functional S, the solutions are completely

specified by the values of φ at some UV scale z. For z → 0, this data is dual to the UV

couplings λa.

However, the spacetime equations of motion are second order (at large N and low

energies.) In Lorentzian signature their solutions are only uniquely specified after one

specifies additional data, dual to the presence of normalizable modes. The point is that

to solve the spacetime equations of motion one solves the Hamilton-Jacobi equation for

find S, and then solves Hamilton’s equations for φ. S depends on additional constants of

motion a. In the discussion above we have found that a labels the classical states of the

theory.

We have shown that the Hamilton-Jacobi and Callan-Symanzik equations for correla-

tion functions are identical (in the large-N limit) even in the presence of classical states.

Therefore the constants of motion a in the Hamilton-Jacobi formulation of supergravity are

precisely dual to data required in the field theory, in order to specify the scaling behavior of

correlation functions. In other words, the field theory contains all the structure of a theory

governed by second order equations of motion in the bulk. The scaling behavior of the

theory is determined by both the RG flow equations and the Callan-Symanzik equations.

One caveat is that while the natural RG flow equations in field theory specify the vari-

ation of the couplings with scale, the associated Hamilton’s equations of the supergravity

dual specify the flow of φ with z. These two statements are only precisely dual as z → 0.

We will discuss the case of finite z in §5.5.

5.4 Perturbed CFTs with an IR cutoff

We have studied solutions to the Hamilton-Jacobi equations with constants of motion that

specify the (classical) state of the system. There are other solutions. We will discuss

one class for which the constants of motion are dual to one-point functions of operators
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specified at some infrared scale. These are not the same: as discussed in [7], these one-point

functions depend on both the couplings, the state, and the scale.

We consider single free scalar field excitations at energies much smaller then the Planck

scale. For such low energy excitations backreaction is neglectable and one can treat the

scalar field as it was propagating in a fixed AdS background. In this limit Hamilton’s

principal function S[(gµν(x), φ(x)),a] reduces to a function of (z, φ(x),a), where the metric

dependence is replaced by dependence on z. The corresponding HJ equation reduces to a

form similar to (2.7), where t is replaced by z.

One solution to the HJ equation, analogous to (2.6), is

S[φ(x),a, z] =

∫ z0

z
dz̃

∫
ddxL (φ(x, z̃)) , (5.25)

where z0 > z, evaluated on a solution to the equation of motion with boundary conditions

φ(x, z) = φ(x), a ≡ φ(x, z0) = φ0(x). For z0 deep enough in the bulk, φ is dominated by

the term scaling as z∆+ . Therefore, z
−∆+

0 φ0 can be interpreted as the one-point function of

the operator at scale z0. Note, however, that with this choice for the constants of motion a

held fixed, the nonlocal part of S in (5.25) is no longer the generating function of correlation

functions. In order to keep the expectation values φ0 fixed as one varies φ(x), one must

vary the couplings and the state.

Our simplified Lagrangian is

L (φ(x, z̃)) = −1

2
z̃1−d

[
(∂z̃φ)2 + ηµν∂µφ∂νφ +

m2

z2
φ2

]
. (5.26)

Integrating the kinetic term by parts and using the equation of motion we find that (5.25)

can be written as two boundary terms:

S[φ(x), φ0(x)] = −1

2

∫
ddxz̃1−dφ∂z̃φ|z0

z =
1

2

∫
ddx

[
z1−dφ∂zφ − z1−d

0 φ0∂z0
φ0

]
. (5.27)

For simplicity, let us consider a scalar field that almost saturates the Breitenlohner-Freed-

man bound R2
AdSm2 ≥ −4 [28], or equivalently 0 < ν ¿ 1. The solutions to the equations

of motion will have the following leading behavior at small z ≤ z0 ¿ RAdS

φ(x, z) = α(x)z∆−(1 + O(z2) + · · ·) + β(x)z∆+(1 + O(z2) + · · ·) . (5.28)

In this case both independent solutions are normalizable. One may choose either of α,β

to be dual to the coupling, with ∆∓ the corresponding operator dimension [48]. These

are related by a Legendre transformation [18, 39]. We will consider the case that the

operator dimension is ∆+, and α is dual to the coupling in the field theory. The discussion

should then connect smoothly to one for operators of higher dimension, for which the term

proportional to α is non-normalizable.

To write (5.27) as a solution to the Hamilton-Jacobi equations, we must find ∂zφ, ∂z0
φ0

as a function of of φ, φ0:

z∂zφ '
[

∆−z−2ν

z−2ν − z−2ν
0

+
∆+z2ν

z2ν − z2ν
0

]
φ −

[
∆−z∆−z

−∆+

0

z−2ν − z−2ν
0

+
∆+z∆+z

−∆−
0

z2ν − z2ν
0

]
φ0z0∂z0

φ0
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' −
[

∆−z−2ν
0

z−2ν − z−2ν
0

+
∆+z2ν

0

z2ν − z2ν
0

]
φ0 +

[
∆−z−∆+z

∆−
0

z−2ν − z−2ν
0

+
∆+z−∆−z

∆+

0

z2ν − z2ν
0

]
φ . (5.29)

The classical action (5.27) can be written as:

S '
∫

ddx{1

2

[
∆−z−d−2ν

z−2ν − z−2ν
0

+
∆+z−d+2ν

z2ν − z2ν
0

]
φ2 −

[
∆−(zz0)

−∆+

z−2ν − z−2ν
0

+
∆+(zz0)

−∆−

z2ν − z2ν
0

]
φφ0

+
1

2

[
∆−z−d−2ν

0

z−2ν − z−2ν
0

+
∆+z−d+2ν

0

z2ν − z2ν
0

]
φ2

0} . (5.30)

As z → 0 the dimensionless UV coupling becomes u = αz∆− . The dimensionless one-point

function of the dual operator at scale z0 is ũ = βz
∆+

0 .We take u, ũ ∼ 1: the coupling is

specified at a UV scale, and the one-point function at some IR scale. With u, ũ so specified,

β will dominate over α at z0 À z, as βz
∆+

0 À αz
∆−
0 when ũ À u

(
z
z0

)∆−
. If we take the

limits z0 ¿ RAdS and z/z0 ¿ 1, we will find that the interpretation of flow in z as RG

flow is particularly clean. In particular, the action simplifies:

S ∼
∫

ddx

[
1

2
∆−z−dφ2 + 2νz−∆−z

−∆+

0 φφ0 −
1

2
∆+z−d

0 φ2
0

]
. (5.31)

This satisfies the Hamilton-Jacobi equation in the limit specified above, by construction.

Next, Hamilton’s equations for φ are:18

−zdπφ = z∂zφ = zd δS

δφ
∼ ∆−φ + 2νz∆+z

−∆+

0 φ0 . (5.32)

The term ∆−φ is just the beta function to linear order. The second, subleading term,

controls the one-point function fo the dual operator. The general solution to (5.32) is:

φ(x, z) ∼ z∆−λ(x) + z∆+z
−∆+

0 φ0(x) , (5.33)

where λ(x) corresponds to the coupling.

In this limit, (5.25) has the form of the solutions discussed in §3. Here 1
2∆−φ2 matches

the ”local” contribution S(0). The other two terms in (5.31) belong to Γ. Note that

∂φΓ|φ0 fixed = 2νz−∆−z
−∆+

0 φ0 = 〈O〉 . (5.34)

However, ∂2
φΓ|φ0 fixed = 0. Because we have kept φ0 rather than φ̃ in our variations,

variations of Γ with respect to φ are not the correlation functions of the theory.

The action (5.30) has a symmetry under exchanging (z0, φ0,∆+) with (z, φ,∆−) and

flipping the overall sign. Thus, taking the opposite limit z0/z → 0 with z ¿ RAdS, will

result in exchanging the roles of φ0 and λ. This limit matches the discussion of §3 if we

choose the second root ϑa = ∆a,+ in (4.19).

We should note that this solution to the Hamilton-Jacobi equation could just as easily

have been found in Euclidean space. The fields will be nonsingular in the region between

18Note that since z is the lower bound of the integral (5.25), πφ = − δS
δφ

.
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z, z0. Only when the IR cutoff is removed will we be forced to choose a particular value

for the normalizable mode. This statement has an candidate analog in the dual field

theory. Conformal perturbation theory for relevant perturbations is plagued by infrared

divergences: the proper treatment of these divergences requires adjusting the one-point

functions of the theory (c.f. [49, 50]-[51].)

5.5 Extension of the holographic RG equations into the IR

As with other discussions of the holographic RG formalism, ours has taken place deep

in the UV region (z → 0) of the theory. There are a number of issues with extending

the equations into the IR, some of which become even more difficult in the Lorentzian

description. Many of these have been mentioned elsewhere, but we wish to collect the

problems here and expand on them.

1. The identification of φ(x, z) as the dimensionless coupling at some scale l(r) was

based on the asymptotic behavior of φ as z → 0 in (3.5). For finite z, the relation

between φ and the coupling is more complicated. (See also [19, 20] for a discussion

of this issue.) First, eq. (3.15) shows that φ is in general a sum of contributions from

the couplings and contributions from the state. Since the procedure of integrating

out modes will depend on the properties of the state (near the cutoff), one might

imagine that as one lowers the cutoff (identified with z), φ can be identified with

the renormalized coupling in some scheme. However, it is unclear to us that such a

scheme exists and is useful in the dual field theory.

Even without such a scheme, some sort of relationship between the Hamilton-Jacobi

and Callan-Symanzik equations should hold. However, the simple local, linear rela-

tion used in (4.25) will no longer hold. More generally, ρ−∆− δ
δφ(x,z) in (4.25) should

be replaced with ∫
ddy

δφ(y, z)

δλ̃z(x)

δ

δφ(y, z)
, (5.35)

where λ̃z is the dimensionless coupling at scale z, and the derivative δλ̃z
φ is taken

with the state fixed.

Nonetheless let us continue to discuss the Hamilton-Jacobi equations. The scaling of

the fields identified by [15, 16] becomes complicated at finite z, as the authors of those

references indeed point out. This leaves less of a reason to solve the Hamilton-Jacobi

equations by breaking them up as in (4.12). Nonetheless, the derivative expansion in the

bulk remains valid, and the first two lines of (4.12) still have the same solution as before.

However, there were additional terms in the Hamilton-Jacobi equation that were dropped

in the small-z approximation, that we can no longer drop. These modify the third equation

in (4.12). The Hamilton-Jacobi equations become:
{

S(0), S(0)
}

= L(0)

2
{

S(0), S(2)
}

= L(2)

2
{

S(0) + S(2) + Γ,Γ
}
− {Γ,Γ} = −

{
S(2), S(2)

}
. (5.36)
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where Γ ≡ S −S(0) − S(2). We will assume that Γ is the generating function of correlation

functions in the cutoff theory. The first term in the third equation can be rewritten via

the full set of Hamilton’s equations

∂φa(x, r)

∂r
=

Gab(φ)√
g

δ

δφa(x, r)

[
S(0) + S(2) + Γ

]

∂gµν(x, r)

∂r
=

1√
g

(
−2

δ

δgµν (x, r)
+

2

3
gµνgλρ δ

δgλρ(x, r)

)[
S(0) + S(2) + Γ

]
, (5.37)

such that

(
− d

dr
+

∂

∂r

)
Γ ≡

∫
ddx

[
∂gµν

∂r
gµρgνσ δ

δgρσ(x, r)
− ∂φa

∂r

δ

δφa(x, r)

]
Γ

= −
∫

ddx
{

S(2), S(2)
}

+

∫
ddx {Γ,Γ} . (5.38)

Eq. (4.4) states that ∂rS = 0. Since we can see explicitly that ∂r(S
(0) + S(2)) = 0, this

implies that ∂rΓ = 0 as well, leaving us with the tantalizing equation:

drΓ +

∫
ddx{Γ,Γ} =

∫
ddx{S(2), S(2)} . (5.39)

We leave the field-theoretic interpretation of this equation for future work. Note that

without the {Γ,Γ} term, this looks like an integrated form of Osborn’s version of the

Callan-Symanzik equations [41].

There are two further problems with relating (5.39) to the field theoretic Callan-

Symanzik equations.

1. As discussed in point (1) above, the relation between φ and the couplings as typically

defined may be complicated, and requires information about the quantum state.

Therefore, there is a lot of work to relate ∂rφδφΓ to β∂λΓ. Note that for spacetime

dependent couplings, one does expect nonlocal contributions to the beta function (as

mentioned in [41]), so some piece of the contribution to ∂rφ, ∂rg from ∂φΓ and ∂gΓ

may appear in the field-theoretic beta functions.

2. We have considered deformations in the UV by single-trace operators only. However,

multiple-trace operators will generically be induced under the RG flow [24]. Nonethe-

less, consider the (infinite-dimensional) surface in the space of couplings which is

swept out by RG trajectories which are purely single-trace in the ultraviolet. For our

Hamilton-Jacobi equations to successfully capture the large-N RG equations, we are

assuming that in our scheme, φa(x, z) are good coordinates on this surface.

3. The role of the term {Γ,Γ} on the left hand side of (5.39) is not understood.

We leave these issues for future work.
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5.6 Reversibility of holographic RG

The work of Susskind and Witten [2] suggests that ”cutting off” the asymptotic region

z < ε of AdS space is dual to a spatial cutoff in the dual field theory. However, Wilsonian

renormalization, achieved by tracing out degrees of freedom at scales larger than the cutoff,

is not a reversible process, while the second order supergravity equations can be integrated

either out towards the boundary or in towards the interior. If Sreg in (4.1) or (5.1) is

meant to describe the quantum field theory cut off at distance scale zUV, why then can we

integrate the equations of motion out to the boundary?

In the classical limit of the spacetime theory, the answer is that the cutoff in Sreg

merely smooths out the short-distance singularities of the theory, and does not set them

to zero. For example, we can see that the two-point function is smooth and generally

nonvanishing as the separation vanishes.19 In our discussion until this point, no limitation

has been placed on the sensitivity of our measurements, so that we can specify information

about the theory at all scales, even in the presence of a cutoff. If this information includes

all possible irrelevant operators (dual to massive fields in the bulk spacetime), then we can

follow the theory into the UV without any obstruction.

In practice, detectors sensitive to gauge theory observables will have limited accuracy.

The detectors could have finite spatial resolution `, or they could have finite sensitivity to

the amplitude of the fluctations. More generally both limitations will be in effect. In the

former case, one would naturally perform experiments with zUV set equal to `; the finite

resolution makes it impossible to follow the theory into the UV. In the second case, at any

given cutoff zUV, one cannot study correlations much below that cutoff, so that one cannot

follow the coupling into the UV.

Either way, limits on the accuracy of our detectors are not built into our classical,

large-N discussion of the AdS/CFT correspondence; this is why we have seen no hint of

irreversibility in our discussion. Of course, one could also study the duals of gauge theories

which are explicitly cut off, as in [52, 53].

6. Conclusions

We have resolved the apparent tension between the first-order RG equations of a quantum

field theory and the second-order supergravity equations which are supposed to encode

the RG flow in the dual asymptotically-AdS spacetime. The essential point is that the RG

behavior of the field theory is contained in two first-order equations — the Callan-Symanzik

equations, and the equations for the evolution of the couplings. The former depends on

the choice of quantum state, which is the additional information one needs to specify the

most general solution to the bulk, second-order supergravity equations.

A number of puzzles remain. In particular, we would like to better understand the

relationship between the bulk fields and the boundary coupling deep in the IR, as discussed

in §4.5; and we would like to understand the apparent modification of the Callan-Symanzik

equations (including the {Γ,Γ} term) in eq. (5.39).

19The point that the finite-z cutoff is a complicated ”smearing” function has been made, for example, in

[14].

– 35 –



J
H
E
P
1
0
(
2
0
0
6
)
0
1
3

Acknowledgments

We would like to thank C. Beasley, M. Headrick, D. Kabat, H. Liu, M.S. Sheikh-Jabbari,

and J. Terning for helpful conversations. We would particularly like to thank O. Aharony,

J. de Boer, D. Marolf, and H. Schnitzer for comments on the draft, as well as for very

helpful discussions and correspondence. We would also like to thank the MIT Center for

Theoretical Physics for their hospitality during the completion of this project. A.L. would

like to thank D.Z. Freedman and M. Headrick for discussions on related subjects during the

incubation of [44]. He would also like to thank the UC Davis cosmology and particle physics

groups, the Stanford theory group, and the IPM string theory group for their generous

hospitality during parts of this project. The research of A.L. and A.S. is supported in

part by NSF grant PHY-0331516, and by DOE Grant No. DE-FG02-92ER40706 via an

Outstanding Junior Investigator award.

We would like to dedicate this work to the memories of John Brodie and Andrew

Chamblin.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200].

[2] L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114.

[3] T. Banks and M.B. Green, Non-perturbative effects in AdS5 × S5 string theory and D = 4

SUSY Yang-Mills, JHEP 05 (1998) 002 [hep-th/9804170].

[4] C.-S. Chu, P.-M. Ho and Y.-Y. Wu, D-instanton in AdS5 and instanton in SYM(4), Nucl.

Phys. B 541 (1999) 179 [hep-th/9806103].

[5] I.I. Kogan and G. Luzon, D-instantons on the boundary, Nucl. Phys. B 539 (1999) 121

[hep-th/9806197].

[6] M. Bianchi, M.B. Green, S. Kovacs and G. Rossi, Instantons in supersymmetric Yang-Mills

and D-instantons in IIB superstring theory, JHEP 08 (1998) 013 [hep-th/9807033].

[7] V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of

anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017].

[8] A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999)

065011 [hep-th/9809022].

[9] S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and

anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001].

[10] J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859

[hep-th/9803002].

[11] E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group

flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217].

[12] E. Alvarez and C. Gomez, Geometric holography, the renormalization group and the

c-theorem, Nucl. Phys. B 541 (1999) 441 [hep-th/9807226].

– 36 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9805114
http://jhep.sissa.it/stdsearch?paper=05%281998%29002
http://arxiv.org/abs/hep-th/9804170
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB541%2C179
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB541%2C179
http://arxiv.org/abs/hep-th/9806103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB539%2C121
http://arxiv.org/abs/hep-th/9806197
http://jhep.sissa.it/stdsearch?paper=08%281998%29013
http://arxiv.org/abs/hep-th/9807033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C104021
http://arxiv.org/abs/hep-th/9808017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C065011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C065011
http://arxiv.org/abs/hep-th/9809022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC22%2C379
http://arxiv.org/abs/hep-th/9803001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4859
http://arxiv.org/abs/hep-th/9803002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB442%2C152
http://arxiv.org/abs/hep-th/9806217
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB541%2C441
http://arxiv.org/abs/hep-th/9807226


J
H
E
P
1
0
(
2
0
0
6
)
0
1
3

[13] M. Porrati and A. Starinets, Rg fixed points in supergravity duals of 4D field theory and

asymptotically AdS spaces, Phys. Lett. B 454 (1999) 77 [hep-th/9903085].

[14] V. Balasubramanian and P. Kraus, Spacetime and the holographic renormalization group,

Phys. Rev. Lett. 83 (1999) 3605 [hep-th/9903190].

[15] J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP

08 (2000) 003 [hep-th/9912012].

[16] J. de Boer, The holographic renormalization group, Fortschr. Phys. 49 (2001) 339

[hep-th/0101026].

[17] V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk vs. boundary dynamics in

anti-de Sitter spacetime, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171].

[18] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.

B 556 (1999) 89 [hep-th/9905104].

[19] J. Kalkkinen, D. Martelli and W. Muck, Holographic renormalisation and anomalies, JHEP

04 (2001) 036 [hep-th/0103111].

[20] M. Berg and H. Samtleben, Holographic correlators in a flow to a fixed point, JHEP 12

(2002) 070 [hep-th/0209191].

[21] D. Marolf, States and boundary terms: subtleties of lorentzian AdS/CFT, JHEP 05 (2005)

042 [hep-th/0412032].

[22] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109].

[23] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

[24] O. Aharony, M. Berkooz and E. Silverstein, Multiple-trace operators and non-local string

theories, JHEP 08 (2001) 006 [hep-th/0105309].

[25] E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence,

hep-th/0112258.

[26] M. Berkooz, A. Sever and A. Shomer, Double-trace deformations, boundary conditions and

spacetime singularities, JHEP 05 (2002) 034 [hep-th/0112264].

[27] A. Sever and A. Shomer, A note on multi-trace deformations and AdS/CFT, JHEP 07

(2002) 027 [hep-th/0203168].

[28] P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and

gauged extended supergravity, Phys. Lett. B 115 (1982) 197.

[29] P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Ann. Phys.

(NY) 144 (1982) 249.

[30] G.T. Horowitz and H. Ooguri, Spectrum of large-N gauge theory from supergravity, Phys.

Rev. Lett. 80 (1998) 4116 [hep-th/9802116].

[31] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131].

[32] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal

field theory, hep-th/9808016.

– 37 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB454%2C77
http://arxiv.org/abs/hep-th/9903085
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C3605
http://arxiv.org/abs/hep-th/9903190
http://jhep.sissa.it/stdsearch?paper=08%282000%29003
http://jhep.sissa.it/stdsearch?paper=08%282000%29003
http://arxiv.org/abs/hep-th/9912012
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C49%2C339
http://arxiv.org/abs/hep-th/0101026
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C046003
http://arxiv.org/abs/hep-th/9805171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB556%2C89
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB556%2C89
http://arxiv.org/abs/hep-th/9905104
http://jhep.sissa.it/stdsearch?paper=04%282001%29036
http://jhep.sissa.it/stdsearch?paper=04%282001%29036
http://arxiv.org/abs/hep-th/0103111
http://jhep.sissa.it/stdsearch?paper=12%282002%29070
http://jhep.sissa.it/stdsearch?paper=12%282002%29070
http://arxiv.org/abs/hep-th/0209191
http://jhep.sissa.it/stdsearch?paper=05%282005%29042
http://jhep.sissa.it/stdsearch?paper=05%282005%29042
http://arxiv.org/abs/hep-th/0412032
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150
http://jhep.sissa.it/stdsearch?paper=08%282001%29006
http://arxiv.org/abs/hep-th/0105309
http://arxiv.org/abs/hep-th/0112258
http://jhep.sissa.it/stdsearch?paper=05%282002%29034
http://arxiv.org/abs/hep-th/0112264
http://jhep.sissa.it/stdsearch?paper=07%282002%29027
http://jhep.sissa.it/stdsearch?paper=07%282002%29027
http://arxiv.org/abs/hep-th/0203168
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB115%2C197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C144%2C249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C144%2C249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4116
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4116
http://arxiv.org/abs/hep-th/9802116
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C505
http://arxiv.org/abs/hep-th/9803131
http://arxiv.org/abs/hep-th/9808016


J
H
E
P
1
0
(
2
0
0
6
)
0
1
3

[33] L.G. Yaffe, Large-N limits as classical mechanics, Rev. Mod. Phys. 54 (1982) 407.

[34] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories,

string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111].

[35] K. Skenderis and M. Taylor, Kaluza-Klein holography, JHEP 05 (2006) 057

[hep-th/0603016].

[36] J. Polchinski, L. Susskind and N. Toumbas, Negative energy, superluminosity and holography,

Phys. Rev. D 60 (1999) 084006 [hep-th/9903228].

[37] D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the

CFT(d)/AdS(d + 1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058].

[38] J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge

theory, hep-th/0003136.

[39] T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and

functional determinants in AdS/CFT, hep-th/0602106.

[40] K. Skenderis, Lecture notes on holographic renormalization, Class. and Quant. Grav. 19

(2002) 5849 [hep-th/0209067].

[41] H. Osborn, Weyl consistency conditions and a local renormalization group equation for

general renormalizable field theories, Nucl. Phys. B 363 (1991) 486.

[42] J. Erdmenger, A field-theoretical interpretation of the holographic renormalization group,

Phys. Rev. D 64 (2001) 085012 [hep-th/0103219].

[43] J. Cardy, Scaling and renormalization in statistical physics, Cambridge, 1996.

[44] D.Z. Freedman, M. Headrick and A. Lawrence, On closed string tachyon dynamics, Phys.

Rev. D 73 (2006) 066015 [hep-th/0510126].

[45] A.B. Zamolodchikov, Renormalization group and perturbation theory near fixed points in

two-dimensional field theory, Sov. J. Nucl. Phys. 46 (1987) 1090.

[46] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023

[hep-th/9806087].

[47] M. Fukuma, S. Matsuura and T. Sakai, A note on the Weyl anomaly in the holographic

renormalization group, Prog. Theor. Phys. 104 (2000) 1089 [hep-th/0007062].

[48] V. Balasubramanian, S.B. Giddings and A.E. Lawrence, What do CFTS tell us about

anti-de Sitter spacetimes?, JHEP 03 (1999) 001 [hep-th/9902052].

[49] K.G. Wilson, Nonlagrangian models of current algebra, Phys. Rev. 179 (1969) 1499.

[50] R. Jackiw and S. Templeton, How superrenormalizable interactions cure their infrared

divergences, Phys. Rev. D 23 (1981) 2291.

[51] A.B. Zamolodchikov, Two point correlation function in scaling Lee-Yang model, Nucl. Phys.

B 348 (1991) 619.

[52] S. Hellerman, Lattice gauge theories have gravitational duals, hep-th/0207226.

[53] N. Evans, T.R. Morris and O.J. Rosten, Gauge invariant regularization in the AdS/CFT

correspondence and ghost D-branes, Phys. Lett. B 635 (2006) 148 [hep-th/0601114].

– 38 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C54%2C407
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C323%2C183
http://arxiv.org/abs/hep-th/9905111
http://jhep.sissa.it/stdsearch?paper=05%282006%29057
http://arxiv.org/abs/hep-th/0603016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C084006
http://arxiv.org/abs/hep-th/9903228
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB546%2C96
http://arxiv.org/abs/hep-th/9804058
http://arxiv.org/abs/hep-th/0003136
http://arxiv.org/abs/hep-th/0602106
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C19%2C5849
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C19%2C5849
http://arxiv.org/abs/hep-th/0209067
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB363%2C486
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C085012
http://arxiv.org/abs/hep-th/0103219
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C066015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C066015
http://arxiv.org/abs/hep-th/0510126
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA%2C46%2C1090
http://jhep.sissa.it/stdsearch?paper=07%281998%29023
http://arxiv.org/abs/hep-th/9806087
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C104%2C1089
http://arxiv.org/abs/hep-th/0007062
http://jhep.sissa.it/stdsearch?paper=03%281999%29001
http://arxiv.org/abs/hep-th/9902052
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C179%2C1499
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD23%2C2291
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB348%2C619
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB348%2C619
http://arxiv.org/abs/hep-th/0207226
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB635%2C148
http://arxiv.org/abs/hep-th/0601114

